Recognition of non-self, pathogen-associated molecular patterns is a central component of host immune response to pathogens like viruses. Intracellular detection of viral nucleic acids leads to the production of type I interferons (IFN-I) and subsequent establishment of an antiviral state in infected and neighboring cells. Viruses have evolved multiple mechanisms to counteract IFN-I responses in infected cells, however, viral nucleic acids released from dying cells can stimulate IFN-I production in surrounding or distal uninfected cells. This thesis examines the mechanisms by which cells recognize extracellular viral nucleic acids and the subsequent downstream antiviral signaling. Class A scavenger receptors (SR-As) internalize extracellular viral double-stranded RNA (dsRNA) to mediate IFN-I responses, but little is known about extracellular viral DNA. We observed that extracellular DNA is recognized and internalized by SR-As in a manner like extracellular dsRNA. Furthermore, we established that SR-A1 is sufficient in mediating extracellular dsRNA-induced cellular responses and other nucleic acid receptors like SR-J1 and DEC-205 are dispensable. Finally, a direct interaction of RNA and DNA species was demonstrated with the coiled-coil collagenous domain of SR-A1, but not the scavenger receptor cysteine rich domain of SR-A6.We elaborated the role of SR-A1 by identifying the cellular processes activated through SR-A1 following uptake of extracellular dsRNA. Cytosolic sensors are essential in mediating an antiviral response to the endocytosed dsRNA, but the mechanism of endoplasmic release and cytoplasmic entry of dsRNA remains an enigma. We demonstrated that the lack of a dsRNA-channel, SIDT2, impaired the ability of the cells to mediate an antiviral response to extracellular dsRNA. Understanding host responses to extracellular viral nucleic acids will enable the development of novel vaccines and antiviral therapeutics against RNA and DNA viruses that efficiently counteract these responses in infected cells. / Thesis / Doctor of Philosophy (PhD) / Viral infections remain a threat to global health as new diseases continue to emerge. To develop effective vaccines and antivirals to combat viruses and alleviate human disease require a deeper understanding of virus-host interactions. Host cells identify virus-associated molecules to detect viruses and eliminate them whereas, viruses employ tactics to prevent the activation of the immune system. However, virus-induced cell lysis releases viral molecules that can stimulate immune responses in neighbouring uninfected cells. This thesis examines the mechanism by which cells respond to extracellular viral nucleic acids.
We showed that a protein present at the cell surface called ‘class A scavenger receptor 1’ is sufficient to internalize extracellular viral nucleic acids, leading to immune responses. The response is impaired when a channel protein, SIDT2, is absent in the cells. Further work is necessary to understand how this knowledge can be harnessed to develop vaccines and antiviral therapeutics.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26358 |
Date | January 2021 |
Creators | Baid, Kaushal |
Contributors | Mossman, Karen L., Biochemistry and Biomedical Sciences |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0056 seconds