Return to search

The interplay between microbial dysbiosis and immune dysfunction with age

It is well known that the elderly often manifest chronic low-grade inflammation. This phenomenon, called “inflamm-aging,” is postulated to contribute to increased susceptibility towards infectious diseases and an overall increase in frailty. We have proposed examining the gut microbiome as a potential mediator of these changes. Gut microbial communities influence the host immune system; often dictating an individual’s health status. Thus, harmful gut microbiome changes, termed dysbiosis, are associated with poor health in the elderly. We first sought to understand the key immunological, physiological and microbiome changes occurring with age (Chapter 3). Our data reveals immune impairments in aged mice, with increased intestinal permeability, systemic inflammation and alterations in the functions of myeloid cell populations. However, our aged germ-free (GF) mice are protected from these outcomes, indicating that the old microbiome may play a strong role in these age-associated impairments. To study this further, we have colonized young and old GF mice with the “young” or “old” microbiota in order to determine whether the relationship between microbial dysbiosis with age and health status is correlative or causative (Chapter 4). Interestingly, young GF mice colonized with old microbiota have significantly increased permeability, systemic inflammation and an influx of Ly6Chigh monocytes when compared to those colonized with the young microbiota. By using transgenic mice (TNF-/- mice), or by reducing systemic TNF levels via therapeutics, we were able to reduce some aspects of microbial dysbiosis and age-associated inflammation (Chapter 5). Our data suggests that harmful changes to the gut microbiome composition with age initiate a cycle of negative events that ultimately result in increased inflammatory myeloid cell recruitment, increased intestinal permeability and an overall increase in systemic inflammation in old mice. By identifying these key changes, we can work towards developing effective therapeutics that promotes healthy aging and protection against infectious diseases. / Thesis / Master of Science (MSc) / Élie Metchnikoff first coined the term “dysbiosis” when he described the imbalance in microbial populations that could result anywhere in the body. Since then, numerous studies have examined the role of the intestinal microbiota in defense against pathogens. Metchnikoff also suggested that the gut composition and function is altered with age and this can in turn; increase the host’s susceptibility towards infectious diseases. My research aims to characterize the role of microbial dysbiosis on the immune defects with age. To do so, I will be utilizing a unique set of mice, called gnotobiotic mice. These mice are housed under specific germ-free conditions and contain no microbiome. Thus, they provide us with the ideal model to study the effects of the microbiome on immune function. The findings from these studies will help in the development of preventative and therapeutic alternatives to provide the elderly with more years of healthy, independent living.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20290
Date January 2016
CreatorsThevaranjan, Netusha
ContributorsBowdish, Dawn, Medical Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds