<p>In this Master Thesis, a model of a video coding system that uses the transportation plan taken from the calculation of the Kantorovich distance is developed. The coder uses the transportation plan instead of the differential image and sends it through blocks of transformation, quantization and coding. </p><p>The Kantorovich distance is a rather unknown distance metric that is used in optimization theory but is also applicable on images. It can be defined as the cheapest way to transport the mass of one image into another and the cost is determined by the distance function chosen to measure distance between pixels. The transportation plan is a set of finitely many five-dimensional vectors that show exactly how the mass should be moved from the transmitting pixel to the receiving pixel in order to achieve the Kantorovich distance between the images. A vector in the transportation plan is called an arc. </p><p>The original transportation plan was transformed into a new set of four-dimensional vectors called the modified difference plan. This set replaces the transmitting pixel and the receiving pixel with the distance from the transmitting pixel of the last arc and the relative distance between the receiving pixel and the transmitting pixel. The arcs where the receiving pixels are the same as the transmitting pixels are redundant and were removed. The coder completed an eleven frame sequence of size 128x128 pixels in eight to ten hours.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-2330 |
Date | January 2004 |
Creators | Östman, Martin |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0012 seconds