Return to search

Recalage d'images médicales par inférence statistique

Le recalage est un problème classique en vision par ordinateur qui intervient notamment dans de nombreuses tâches d'analyse des images médicales. Le principe général d'un algorithme de recalage est d'optimiser un critère mesurant la correspondance entre deux images sur un espace prédéterminé de transformations spatiales. Le choix du critère, appelé mesure de similarité, conditionne de façon déterminante la précision et la robustesse de l'algorithme. Il existe aujourd'hui un dictionnaire de mesures de similarité dans lequel le concepteur d'un programme choisit, en se fiant le plus souvent à son intuition et à son expérience, celle qui est la mieux adaptée à son problème particulier. Afin de rendre plus objectif un tel choix, cette thèse propose une méthodologie pour construire des mesures de similarité en fonction de modèles probabilistes de formation d'images. En considérant d'abord un modèle simple de liaison fonctionnelle entre les intensités des images, nous définissons une nouvelle classe de mesures de similarité liée à la notion de rapport de corrélation. Nous montrons expérimentalement que cette classe est adaptée au recalage rigide multimodal d'images acquises par résonance magnétique (IRM), scanner et scintigraphie. La méthode du rapport de corrélation est ensuite étendue au cas du recalage multimodal non-rigide au prix de quelques adaptations pratiques. Enfin, nous formulons le recalage d'images comme un problème général d'estimation par maximum de vraisemblance, ce qui nous permet de prendre en compte des modèles de dépendance inter-images plus complexes que des modèles fonctionnels. Cette approche est appliquée au recalage rigide d'images ultrasonores 3D et IRM.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00636180
Date02 February 2001
CreatorsRoche, Alexis
PublisherUniversité de Nice Sophia-Antipolis
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds