Protecting drinking water supplies from pathogens such as Cryptosporidium parvum is a major concern for water treatment plants worldwide. The sensitivity and specificity of current detection methods are largely determined by the effectiveness of the concentration and separation methods used. In this study, disposable microfluidic micromixers were fabricated to effectively isolate Cryptosporidium parvum Oocysts from water samples, while allowing direct observation of Oocysts captured in the device using high quality immunofluorescence microscopy. In parallel, quantitative analysis of the capture yield was carried out by analyzing the waste from the microfluidics outlet with an Imaging Flow Cytometer. At the optimal flow rate, capture efficiencies higher than 95% were achieved in spiked samples, suggesting that scaled microfluidic isolation and detection of Cryptosporidium parvum will provide a faster and more efficient detection method for Cryptosporidium compared to other available laboratory-scale technologies.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-210729 |
Date | January 2017 |
Creators | Karimi Molan, Safa |
Publisher | KTH, Mark- och vattenteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-LWR Degree Project, 1651-064X ; 2017:06 |
Page generated in 0.0022 seconds