<p>Specific and non-specific interactions of solutes with immobilized biomembranes were studied using chromatographic methods. Liposomes, proteoliposomes and red blood cell (RBC) membrane vesicles were immobilized by a freeze-thawing procedure, whereas whole RBCs were adsorbed in the gel beds using electrostatic interaction, binding to wheat germ agglutinin (WGA) or the streptavidin-biotin interaction. </p><p>Superporous agarose gel with coupled WGA was the most promising matrix for RBC adsorption and allowed frontal chromatographic analyses of the cells for about one week. Dissociation constants for the binding of cytochalasin B and glucose to the glucose transporter GLUT1 were determined under equilibrium conditions. The number of cytochalasin B-binding sites per GLUT1 monomer was calculated and compared to corresponding results measured on free and immobilized membrane vesicles and GLUT1 proteoliposomes. This allowed conclusions about the proteinĀ“s binding state <i>in vitro</i> and <i>in vivo</i>. </p><p>Partitioning of drugs into biomembranes was quantified and the system was suggested as a screening method to test for possible intestinal absorption of drug candidates. We also studied how membrane partitioning of drugs is affected by the presence of integral membrane proteins or of charged phospholipids.</p><p>An attempt to combine the theory for specific binding and membrane partitioning of solutes in a single equation is briefly presented. </p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-2668 |
Date | January 2002 |
Creators | Gottschalk, Ingo |
Publisher | Uppsala University, Department of Biochemistry, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1104-232X ; 755 |
Page generated in 0.0018 seconds