Life Cycle Assessment (LCA) has been successfully used as an environmental assessment tool for the development of ecologically sustainable products. The application of LCA in the early design stage has been constrained by the requirement of large amounts of data and time for carrying out the assessment. In addition, the complexity of LCA causes further difficulties for product developers. In order to integrate the environmental assessment into the process of product development, this research proposes an integrated decision model for sustainable product development and a simplified LCA approach for the application in the early stage of product design. The main advantage of the proposed model is that it incorporates the environmental aspects of product development into the existing product development framework. It enables designers to strike a balance between the product???s environmental performance and other traditional design objectives. The simplified LCA approach is based on the concept and application of Environmental Impact Drivers. Material-based environmental impacts and Energy-based environmental impacts are used to predict the total environmental impact of a product. Two sets of impact drivers were developed accordingly. The Material-based Impact Drivers were identified by classifying materials into 16 groups according to the nature of the materials and their environmental performance. Energy-based Impact Drivers were developed for various energy sources in major industrial regions. Product LCA cases were used to verify the proposed methods. The results computed by the application of the impact drivers were compared with the results of full LCA studies. It is concluded that with the proposed approach, the product???s environmental performance can be assessed in a very short time and with very basic data input requirements and acceptable accuracy.
Identifer | oai:union.ndltd.org:ADTP/258534 |
Date | January 2004 |
Creators | Sun, Mingbo, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW |
Publisher | Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Mingbo Sun, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0015 seconds