Les matériaux absorbants acoustiques, qui sont d’un intérêt stratégique en aéronautique pour la diminution passive du bruit des réacteurs d’avion, conduisent à une physique complexe où l’écoulement turbulent, des ondes acoustiques, et l’absorbant interagissent. Cette thèse porte sur la simulation de cette interaction dans le problème modèle d’un écoulement de canal turbulent avec des parois impédantes, par le biais de simulations numériques aux grandes échelles implicites, dans un contexte de calcul haute performance.Une étude est d’abord faite des grandes échelles dans un canal turbulent avec des parois rigides, en s’intéressant plus particulièrement à l’effet d’une faible compressibilité (Mach <3) sur les caractéristiques de ces échelles.Un canal turbulent avec une paroi de type impédance est ensuite simulé, avec une condition habituelle de périodicité dans le sens de l’écoulement. On observe que pour des faibles valeurs de la résistance et des fréquences de résonance basses, l’écoulement est instable, ce qui engendre une onde le long de l’absorbant, qui modifie la turbulence et augmente la trainée.Enfin, on se tourne vers une simulation de canal spatial en levant la condition de périodicité dans la direction de l’écoulement, ce qui permet d’introduire une onde acoustique en entrée de domaine. L’atténuation de l’onde dans l’écoulement turbulent est étudiée avec des parois rigides, puis un absorbant acoustique est introduit. Dans cette configuration plus réaliste, il est confirmé que l’écoulement peut devenir instable au bord amont de l’absorbant, ce qui empêche l’atténuation de l’onde acoustique incidente. / Acoustic liners are a key technology in aeronautics for the passive reduction of the noise generated by aircraft engines. They are employed in a complex flow scenario in which the acoustic waves, the turbulent flow, and the acoustic liner are interacting.During this thesis, in a context of high performance computing, a compressible Navier-Stokes solver has been developed to perform implicit large eddy simulations of a model problem of this interaction: a turbulent plane channel flow with one wall modeled as an impedance condition.As a preliminary step the wall-turbulence in rigid channel flows and associated large-scale motions are investigated. A straightforward algorithm to detect these flow features is developed and the effect of compressibility on the flow structures and their contribution to the drag are studied. Then, the interaction between the acoustic liner and turbulent flow is investigated assuming periodicity in the streamwise direction. It is shown that low resistance and low resonance frequency tend to trigger flow instability, which modifies the conventional wall-turbulence and also results in drag increase.Finally, the simulation of a spatial channel flow was addressed. In this case no periodicity is assumed and an acoustic wave can be injected at the inlet of the domain. The effect of turbulence on sound attenuation is studied without liner, before a liner is introduced on a part of the channel bottom wall. In this more realistic case, it is confirmed that low resistance acoustic liners trigger an instability at the leading edge of the liner, resulting in drag increase and excess noise generation.
Identifer | oai:union.ndltd.org:theses.fr/2018POIT2297 |
Date | 26 November 2018 |
Creators | Sebastian, Robin |
Contributors | Poitiers, Lamballais, Eric, Fortuné, Véronique, Marx, David |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0041 seconds