Return to search

Extraction de connaissances spatio-temporelles incertaines pour la prédiction de changements en imagerie satellitale

L'interprétation d'images satellitales dans un cadre spatiotemporel devient une voie d'investigation de plus en plus pertinente pour l'étude et l'interprétation des phénomènes dynamiques. Cependant, le volume de données images devient de plus en plus considérable ce qui rend la tâche d'analyse manuelle des images satellitales plus difficile. Ceci a motivé l'intérêt des recherches sur l'extraction automatique de connaissances appliquée à l'imagerie satellitale. Notre thèse s'inscrit dans ce contexte et vise à exploiter les connaissances extraites à partir des images satellitales pour prédire les changements spatiotemporels de l'occupation du sol. L'approche proposée consiste en trois phases : i) la première phase permet une modélisation spatiotemporelle des images satellitales, ii) la deuxième phase assure la prédiction de changements de l'occupation du sol et iii) la troisième phase consiste à interpréter les résultats obtenus. Notre approche intègre trois niveaux de gestion des imperfections : la gestion des imperfections liées aux données, la gestion des imperfections liées à la prédiction et finalement la gestion des imperfections liées aux résultats. Pour les imperfections liées aux données, nous avons procédé par une segmentation collaborative. Le but étant de réduire la perte d'information lors du passage du niveau pixel au niveau objet. Pour les imperfections liées à la prédiction, nous avons proposé un processus basé sur les arbres de décisions floues. Ceci permet de modéliser les imperfections liées à la prédiction de changements. Finalement, pour les imperfections liées aux résultats, nous avons utilisé les techniques de Raisonnement à Base des Cas et de fusion pour identifier et combiner les décisions pertinentes. L'expérimentation de l'approche proposée est scindée en deux étapes : une étape d'application et une étape d'évaluation. Les résultats d'évaluation ont montré la performance de notre approche mesurée en termes de taux d'erreur par rapport à des approches existantes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00741990
Date28 June 2012
CreatorsBOULILA, Wadii
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds