Les résultats obtenus dans cette thèse concernent l'estimation non paramétrique de densités de probabilité. Principalement, nous nous intéressons à estimer une densité de probabilité multidimensionnelle de régularité anisotrope et inhomogène. Nous proposons des procédures d'estimation qui sont adaptatives, non seulement par rapport aux paramètres de régularité, mais aussi par rapport à la structure d'indépendance de la densité de probabilité estimée. Cela nous permet de réduire l'influence de la dimension du domaine d'observation sur la qualité d'estimation et de faire en sorte que cette dernière soit la meilleure possible. Pour analyser la performance de nos méthodes nous adoptons le point de vue minimax et nous généralisons un critère d'optimalité pour l'estimation adaptative. L'utilisation du critère que nous proposons s'impose lorsque le paramètre d'intérêt est estimé en un point fixé car, dans ce cas, il y a un "prix à payer" pour l'adaptation par rapport à la régularité et à la structure d'indépendance. Cela n'est plus vrai lorsque l'estimation est globale. Dans le modèle de densité (avec des observations directes) nous considérons le problème de l'estimation ponctuelle et celui de l'estimation en norme $bL_p$, $pin[1,infty)$. Dans le modèle de déconvolution (avec des observations bruitées) nous étudions le problème de l'estimation en norme $bL_p$, $pin[1,infty]$, dans le cas où la fonction caractéristique du bruit décroît polynomialement à l'infini. Chaque estimateur que nous proposons est obtenu par une procédure de sélection aléatoire dans une famille d'estimateurs à noyau. / The results obtained in this thesis concern the non parametric estimation of probability densities. Primarily, we are interested in estimating a multivariate probability density which is anisotropic and inhomogeneous. We propose estimation procedures that enable us to take into account the regularity properties of the underlying probability density and its independence structure simultaneously. This allows us to reduce the influence of the dimension of the observation space on the accuracy of estimation and then to improve it. To analyze the performance of our methods we adopt the minimax point of view and we generalize a criterion of optimality for adaptive estimation. The use of the criterion we propose is necessary for estimation at a fixed point. Indeed, in this setting, there is a "penalty" for adaptation with respect to the regularity and to the independence structure. This is no longer true for global estimation. In the density model (with direct observations) we consider both the problem of pointwise estimation and the problem of estimation under $bL_p$-loss ($pin[1,infty)$). In the deconvolution model (with noisy observations) we study the problem of estimation with an $bL_p$-risk ($pin[1,infty]$) when the characteristic function of the noise decreases polynomially at infinity. Any estimator that we propose is obtained by a random selection procedure in a family of kernel estimators.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4774 |
Date | 10 December 2015 |
Creators | Rebelles, Gilles |
Contributors | Aix-Marseille, Lepski, Oleg V. |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds