• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Déformation des feuilletages par variétés complexes / Deformations of foliations by complex manifolds

Burel, Thomas 10 December 2010 (has links)
L'objet de ce travail est de généraliser au cas des variétés feuilletées par variétés complexes la théorie des déformations de variétés complexes compactes développée notamment par les travaux de Kodaira et Spencer vers la fi n des années cinquante. Après avoir défni la notion de famille de déformations de variétés feuilletées par variétés complexes compactes, nous avons pu obtenir un analogue des théorèmes de rigidité, de complétude et d'existence dans notre cadre. Les méthodes de démonstration usant de la théorie du potentiel ne sont pas généralisables car les opérateurs différentiels considérés ici ne sont plus elliptiques. On se tourne alors vers des techniques de séries majorantes pour obtenir ces résultats, en particulier pour le théorème d'existence qui généralise la démonstration faite par Forster et Knorr en 1974. / The aim of this work is to generalise the study of deformations of complex manifolds by kodaira and Spencer to the case of manifolds foliated by complex manifolds. After defning the notion of family of deformations of compact manifold foliated by complex manifolds, we prove a theorem of rigidity, one of completeness and one of existence in our framework. We can not apply one potential theory here, so we have to use power series technics.
2

Sur l'estimation adaptative d'une densité multivariée sous l'hypothèse de la structure d'indépendance / On adaptive estimation of a multivariate density under independence hypothesis.

Rebelles, Gilles 10 December 2015 (has links)
Les résultats obtenus dans cette thèse concernent l'estimation non paramétrique de densités de probabilité. Principalement, nous nous intéressons à estimer une densité de probabilité multidimensionnelle de régularité anisotrope et inhomogène. Nous proposons des procédures d'estimation qui sont adaptatives, non seulement par rapport aux paramètres de régularité, mais aussi par rapport à la structure d'indépendance de la densité de probabilité estimée. Cela nous permet de réduire l'influence de la dimension du domaine d'observation sur la qualité d'estimation et de faire en sorte que cette dernière soit la meilleure possible. Pour analyser la performance de nos méthodes nous adoptons le point de vue minimax et nous généralisons un critère d'optimalité pour l'estimation adaptative. L'utilisation du critère que nous proposons s'impose lorsque le paramètre d'intérêt est estimé en un point fixé car, dans ce cas, il y a un "prix à payer" pour l'adaptation par rapport à la régularité et à la structure d'indépendance. Cela n'est plus vrai lorsque l'estimation est globale. Dans le modèle de densité (avec des observations directes) nous considérons le problème de l'estimation ponctuelle et celui de l'estimation en norme $bL_p$, $pin[1,infty)$. Dans le modèle de déconvolution (avec des observations bruitées) nous étudions le problème de l'estimation en norme $bL_p$, $pin[1,infty]$, dans le cas où la fonction caractéristique du bruit décroît polynomialement à l'infini. Chaque estimateur que nous proposons est obtenu par une procédure de sélection aléatoire dans une famille d'estimateurs à noyau. / The results obtained in this thesis concern the non parametric estimation of probability densities. Primarily, we are interested in estimating a multivariate probability density which is anisotropic and inhomogeneous. We propose estimation procedures that enable us to take into account the regularity properties of the underlying probability density and its independence structure simultaneously. This allows us to reduce the influence of the dimension of the observation space on the accuracy of estimation and then to improve it. To analyze the performance of our methods we adopt the minimax point of view and we generalize a criterion of optimality for adaptive estimation. The use of the criterion we propose is necessary for estimation at a fixed point. Indeed, in this setting, there is a "penalty" for adaptation with respect to the regularity and to the independence structure. This is no longer true for global estimation. In the density model (with direct observations) we consider both the problem of pointwise estimation and the problem of estimation under $bL_p$-loss ($pin[1,infty)$). In the deconvolution model (with noisy observations) we study the problem of estimation with an $bL_p$-risk ($pin[1,infty]$) when the characteristic function of the noise decreases polynomially at infinity. Any estimator that we propose is obtained by a random selection procedure in a family of kernel estimators.
3

Unificando o análise local do método de Newton em variedades Riemannianas / Unifying local analysis of Newton's method in Riemannian manifolds

Guevara, Stefan Alberto Gómez 08 March 2017 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-03-16T12:01:01Z No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:11:14Z (GMT) No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-20T13:11:14Z (GMT). No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-08 / In this work we consider the problem of finding a singularity of a field of differentiable vectors X on a Riemannian manifold. We present a local analysis of the convergence of Newton's method to find a singularity of field X on an increasing condition. The analysis shows a relationship between the major function and the vector field X. We also present a semi-local Kantorovich type analysis in the Riemannian context under a major condition. The two results allow to unify some previously unrelated results. / Neste trabalho consideramos o problema de encontrar uma singularidade de um campo de vetores diferenciável X sobre uma variedade Riemanniana. Apresentamos uma análise local da convergência do método de Newton para encontrar uma singularidade do Campo X sobre uma condição majorante. A análise mostra uma relação entre a função majorante e o campo de vetores X. Também apresentamos uma análise semi-local do tipo Kantorovich no contexto Riemanniana sob uma condição majorante. Os dois resultados permitem unificar alguns resultados não previamente.
4

Análise semi-local do método de Gauss-Newton sob uma condição majorante / Semi-local analysis of the Gauss-Newton under a majorant condition

Aguiar, Ademir Alves 18 December 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-05T14:28:50Z No. of bitstreams: 2 Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-06T10:38:03Z (GMT) No. of bitstreams: 2 Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-06T10:38:03Z (GMT). No. of bitstreams: 2 Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-12-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we present a semi-local convergence analysis for the Gauss-Newton method to solve a special class of systems of non-linear equations, under the hypothesis that the derivative of the non-linear operator satisfies a majorant condition. The proofs and conditions of convergence presented in this work are simplified by using a simple majorant condition. Another tool of demonstration that simplifies our study is to identify regions where the iteration of Gauss-Newton is “well-defined”. Moreover, special cases of the general theory are presented as applications. / Nesta dissertação apresentamos uma análise de convergência semi-local do método de Gauss-Newton para resolver uma classe especial de sistemas de equações não-lineares, sob a hipótese que a derivada do operador não-linear satisfaz uma condição majorante. As demonstrações e condições de convergência apresentadas neste trabalho são simplificadas pelo uso de uma simples condição majorante. Outra ferramenta de demonstração que simplifica o nosso estudo é a identificação de regiões onde a iteração de Gauss-Newton está “bem-definida”. Além disso, casos especiais da teoria geral são apresentados como aplicações.
5

Newton's methods under the majorant principle on Riemannian manifolds / Métodos de Newton sob o princípio majorante em variedades riemannianas

Martins, Tiberio Bittencourt de Oliveira 26 June 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:04:41Z No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:25:04Z (GMT) No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-11-03T14:25:04Z (GMT). No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos. / A local convergence analysis with relative residual error tolerance of inexact Newton method and a semi-local analysis of a robust exact and inexact Newton methods are presented in this thesis, objecting to nd a singularity of a di erentiable vector eld de ned on a complete Riemannian manifold, based on a ne invariant majorant principle. Considering local assumptions and a general majorant function, the Q-linear convergence of inexact Newton method with a xed relative residual error tolerance is proved. In the absence of errors, the analysis presented retrieves the classical local theorem on Newton's method in Riemannian context. In the semi-local analysis of exact and inexact Newton methods presented, the classical Lipschitz condition is also relaxed by using a general majorant function, allowing to establish the existence and also local uniqueness of the solution, unifying previous results pertaining Newton's method. The analysis emphasizes robustness, being more speci c, is given a prescribed ball around the point satisfying Kantorovich's assumptions, ensuring convergence of the method for any starting point in this ball. Furthermore, the bounds depending on the majorant function for Q-quadratic convergence rate of the exact method and Q-linear convergence rate of the inexact method are obtained.
6

Newton's method for solving strongly regular generalized equation / Método de Newton para resolver equações generalizadas fortemente regulares

Silva, Gilson do Nascimento 13 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-22T20:23:25Z No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-23T11:30:21Z (GMT) No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-23T11:30:21Z (GMT). No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We consider Newton’s method for solving a generalized equation of the form f(x) + F(x) 3 0, where f : Ω → Y is continuously differentiable, X and Y are Banach spaces, Ω ⊆ X is open and F : X ⇒ Y has nonempty closed graph. Assuming strong regularity of the equation and that the starting point satisfies Kantorovich’s conditions, we show that the method is quadratically convergent to a solution, which is unique in a suitable neighborhood of the starting point. In addition, a local convergence analysis of this method is presented. Moreover, using convex optimization techniques introduced by S. M. Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), we prove a robust convergence theorem for inexact Newton’s method for solving nonlinear inclusion problems in Banach space, i.e., when F(x) = −C and C is a closed convex set. Our analysis, which is based on Kantorovich’s majorant technique, enables us to obtain convergence results under Lipschitz, Smale’s and Nesterov-Nemirovskii’s self-concordant conditions. / N´os consideraremos o m´etodo de Newton para resolver uma equa¸c˜ao generalizada da forma f(x) + F(x) 3 0, onde f : Ω → Y ´e continuamente diferenci´avel, X e Y s˜ao espa¸cos de Banach, Ω ⊆ X ´e aberto e F : X ⇒ Y tem gr´afico fechado n˜ao-vazio. Supondo regularidade forte da equa¸c˜ao e que o ponto inicial satisfaz as hip´oteses de Kantorovich, mostraremos que o m´etodo ´e quadraticamente convergente para uma solu¸c˜ao, a qual ´e ´unica em uma vizinhan¸ca do ponto inicial. Uma an´alise de convergˆencia local deste m´etodo tamb´em ´e apresentada. Al´em disso, usando t´ecnicas de otimiza¸c˜ao convexa introduzida por S. M. Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), provaremos um robusto teorema de convergˆencia para o m´etodo de Newton inexato para resolver problemas de inclus˜ao n˜ao–linear em espa¸cos de Banach, i.e., quando F(x) = −C e C ´e um conjunto convexo fechado. Nossa an´alise, a qual ´e baseada na t´ecnica majorante de Kantorovich, nos permite obter resultados de convergˆencia sob as condi¸c˜oes Lipschitz, Smale e Nesterov-Nemirovskii auto-concordante.

Page generated in 0.0525 seconds