Cette thèse est consacrée à deux sujets distincts : l'étude des principes conditionnels de type Gibbs et celle des inégalités de transport. Dans la première partie de cette thèse, nous nous intéressons au comportement asymptotique de la loi de certaines mesures aléatoires satisfaisant un principe de grandes déviations, conditionnellement au fait qu'un événement rare s'est produit. Nous nous plaçons dans le cas, peu étudié, où l'événement considéré est de probabilité nulle. Notre stratégie consiste à approcher progressivement cet événement par une suite d'événements plus épais. Cette approche, qui nécessite des contrôles exacts des petites probabilités, conduit à une formulation en limite simple de certains principes conditionnels. La seconde partie de cette thèse porte sur les inégalités de transport : on cherche à majorer un coût de transport optimal au sens de Kantorovich par une fonction concave de l'entropie relative. Notre objectif est de mettre en évidence les liens existant entre ce sujet et la théorie des Grandes Déviations. Nous montrons que ces inégalités admettent une formulation duale en termes de transformées de Laplace. Grâce à cette propriété, nous démontrons une formule générale de tensorisation, laquelle entraîne à son tour, de manière quasi-immédiate, des inégalités de déviations pour les processus empiriques. Cette étude est complétée par la démonstration de conditions nécessaires et suffisantes pour qu'une probabilité donnée vérifie une inégalité de transport d'un type assez général.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010173 |
Date | 28 June 2005 |
Creators | Gozlan, Nathaël |
Publisher | Université de Nanterre - Paris X |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds