Return to search

SYNTHESIS, AND STRUCTURAL, ELECTROCHEMICAL, AND MAGNETIC PROPERTY CHARACTERIZATION OF PROMISING ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES AND SODIUM-ION BATTERIES

Iron oxides, have been widely studied as promising anode materials in lithium-ion batteries (LIBs) for their high capacity (≈ 1000 mA h g-1 for Fe2O3 and Fe3O4,), non-toxicity, and low cost. In this work, β-FeOOH has been evaluated within a LIB half-cell showing an excellent capacity of ≈ 1500 mA h g-1 , superior to Fe2O3 or Fe3O4. Reaction mechanism has been proposed with the assistance of X-ray photoelectron spectroscopy (XPS). Various magnetic properties have been suggested for β-FeOOH such as superparamagnetism, antiferromagnetism and complex magnetism, for which, size of the material is believed to play a critical role. Here, we present a size-controlled synthesis of β-FeOOH nanorods. Co-existing superparamagnetism and antiferromagnetism have been revealed in β-FeOOH by using a Physical Property Measurement System (PPMS).
Compared with the high price of lithium in LIBs, sodium-ion batteries (SIBs) have attracted increasing attentions for lower cost. Recent studies have reported Na0.44MnO2 to be a promising candidate for cathode material of SIBs. This thesis has approached a novel solid-state synthesis of Na0.44MnO2 whiskers and a nano-scaled open cell for in situ TEM study. Preliminary results show the first-stage fabrication of the cell on a biasing protochip.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:chemistry_etds-1097
Date01 January 2018
CreatorsHan, Ruixin
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Chemistry

Page generated in 0.0022 seconds