Return to search

Estimation des incertitudes et prévision des risques en qualité de l'air

Ce travail porte sur l'estimation des incertitudes et la prévision de risques en qualité de l'air. Il consiste dans un premier temps à construire un ensemble de simulations de la qualité de l'air qui prend en compte toutes les incertitudes liées à la modélisation de la qualité de l'air. Des ensembles de simulations photochimiques à l'échelle continentale ou régionale sont générés automatiquement. Ensuite, les ensembles générés sont calibrés par une méthode d'optimisation combinatoire qui sélectionne un sous-ensemble représentatif de l'incertitude ou performant (fiabilité et résolution) pour des prévisions probabilistes. Ainsi, il est possible d'estimer et de prévoir des champs d'incertitude sur les concentrations d'ozone ou de dioxyde d'azote, ou encore d'améliorer la fiabilité des prévisions de dépassement de seuil. Cette approche est ensuite comparée avec la calibration d'un ensemble Monte Carlo. Ce dernier, moins dispersé, est moins représentatif de l'incertitude. Enfin, on a pu estimer la part des erreurs de mesure, de représentativité et de modélisation de la qualité de l'air

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00679178
Date14 December 2011
CreatorsGaraud, Damien, Garaud, Damien
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0014 seconds