Os modelos de otimização de carteiras baseados na análise média-variância apresentam dificuldades para estimação das matrizes de covariância, usadas no processo de otimização, o que leva a necessidade de métodos ad hoc para limitar ou suavizar as alocações eficientes recomendadas pelo modelo. Embora as carteiras obtidas por este método sejam eficientes, não é assegurado que o tracking error seja estacionário, podendo a carteira se distanciar do benchmark, exigindo frequentes recomposições. Neste artigo é empregada a metodologia de cointegração para otimização de carteiras no âmbito de duas estratégias: index tracking e estratégia long-short. A estabilidade das carteiras otimizadas através da cointegração em diferentes cenários de mercado, diminuindo custos relativos a frequentes recomposições da carteira, e níveis de retorno e volatilidade superiores aos benchmarks, mostram que a metodologia é uma ferramenta eficiente e capaz de gerar resultados robustos, se caracterizando como uma atraente ferramenta para a gestão quantitativa de recursos. Modelar a estrutura a termo da taxa de juros é extremamente importante para macroeconomistas e participantes do mercado financeiro em geral. Neste artigo é empregada a formulação de Diebold-Li para ajustar e fazer previsões da estrutura a termo da taxa de juros brasileira. São empregados dados diários referentes às taxas dos contratos de DI Futuro negociados na BM&F que apresentaram maior liquidez para o período de Janeiro de 2006 a Fevereiro de 2009. Diferentemente da maior parte da literatura sobre curva de juros para dados brasileiros, em que o modelo de Diebold- Li é estimado pelo método de dois passos, neste trabalho o modelo é colocado no formado de estado espaço, e os parâmetros são estimados simultaneamente, de forma eficiente, pelo Filtro de Kalman. Os resultados obtidos tanto para o ajuste, mas principalmente no que diz respeito à previsão, mostram que a estimação do modelo através do Filtro de Kalman é a mais adequada, gerando melhores previsões para todas as maturidades quando é considerado horizontes de previsão de um mês, três meses e seis meses. No terceiro artigo artigo nós propomos estimar o modelo dinâmico da estrutura a termo da curva de juros de Nelson e Siegel (1987) considerando duas especificações alternativas. Na primeira, nós consideramos os pesos dos fatores como variantes no tempo e tratamos a heterocedasticidade condicional via um modelo volatilidade estocática com fatores comuns. No segundo caso, consideramos um modelo onde os fatores latentes seguem individualmente processos autoregressivos com volatilidade estocástica. Os assim chamados fatores de volatilidade buscam capturar a incerteza ao longo do tempo associada ao nível, inclinação e curvatura da curva de juros. A estimação é realizada através de métodos de inferência bayesiana, por Markov Chain Monte Carlo. Os resultados mostram que os fatores de volatilidade são altamente persistentes, dando suporte ao fato estilizado de que os choques na volatilidade das taxas de juros são altamente persistentes, e também indicam que o uso de estruturas de volatilidade estocástica levam a melhores ajustes dentro da amostra para a curva de juros observada. / The traditional models to optimize portfolios based on mean-variance analysis aim to determine the portfolio weights that minimize the variance for a certain return level. The covariance matrices used to optimize are difficult to estimate and ad hoc methods often need to be applied to limit or smooth the mean-variance efficient allocations recommended by the model. Although the method is efficient, the tracking error isn’t certainly stationary, so the portfolio can get distant from the benchmark, requiring frequent re-balancements. We used the cointegration methodology to devise two quantitative strategies: index tracking and long-short market neutral. We aim to design optimal portfolios acquiring the asset prices’ co-movements. We used Ibovespa’s index and stocks from Jan-2000 to Dec-2008. The results show that the devise of index tracking portfolios using cointegration generates goods results, replicating the benchmark’s return and volatility. The long-short strategy generated stable returns under several market circumstances, presenting low volatility. Modeling the term structure of interest rate is very important to macroeconomists and financial market practitioners in general. In this paper, we used the Diebold-Li interpretation to the Nelson Siegel model in order to fit and forecast the Brazilian yield curve. The data consisted of daily observations of the most liquid future ID yields traded in the BM&F from January 2006 to February 2009. Differently from the literature on the Brazilian yield curve, where the Diebold-Li model is estimated through the two-step method, the model herein is put in the state-space form, and the parameters are simultaneously and efficiently estimated using the Kalman filter. The results obtained for the fit and for the forecast showed that the Kalman filter is the most suitable method for the estimation of the model, generating better forecast for all maturities when we consider the forecasting horizons of one and three months. In the third essay we propose to estimate the dynamic Nelson-Siegel model of yield curve considering two alternative specifications. At first, we consider the factor loadings such as time-varying conditonal heteroskedasticity and treat via a common factors of stochastic volatility models. In the second case, we consider a model where the latent factors individually following autorregressive process with stochastic volatility. The volatility factors seek to capture the uncertainty over time associated with level, slope and curvature of yield curve.The estimation is performed through bayesian inference, Markov Chain Monte Carlo. The volatility factors showed high persistence, supporting the stylized fact that shocks in the volatility of interest rate are highly persistent, and also indicate that the used of structures of stochastic volatility lead to better in-sample fits of the observed yield curve.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/25810 |
Date | January 2010 |
Creators | Caldeira, João Frois |
Contributors | Portugal, Marcelo Savino |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0049 seconds