Return to search

Indécomposabilité des graphes et des tournois

Cette thèse porte sur l'indécomposabilité dans les graphes et les tournois. Elle comporte cinq chapitres dont le premier est introductif. Le deuxième chapitre consiste en une étude des tournois indécomposables suivant les tournois indécomposables à 5 ou à 7 sommets qu'ils abritent [3, 2]. Le troisième chapitre est une caractérisation des tournois (-1)-critiques avec une description morphologique de ces tournois [4,5]. Le quatrième chapitre contient une caractérisation des graphes (-1)-critiques [6], répondant ainsi, dans le cas général, à un problème posé par Y. Boudabbous et P. Ille[10]. Le cinquième chapitre est consacré à une opération d'inversion dans les tournois et un invariant, l'indice d'inversion d'un tournoi, dont l'étude a été proposée par M. Pouzet. Le fait que les tournois (-1)-critiques sont d'indice entre 2 et 4 est le lien avec l'étude de la criticalité. Plusieurs propriétés de la classe des tournois d'indice au plus n sont données.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00609544
Date15 July 2009
CreatorsBelkhechine, Houmem
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds