Return to search

Excitons indirects dans les puits quantiques de la grande bande interdite / Indirect excitons in wide bandgap semiconductor quantum wells

Cette thèse est consacrée à l'étude expérimentale des excitons dans des puitsquantiques polaires fabriqués à partir de semi-conducteurs à large bande interdite. En raison de la structure de ces matériaux à cristaux wurtzite, les électrons et les trous sont séparés le long de l'axe de croissance du puits quantique, de sorte que les excitons peuvent être considérés comme des excitons indirects (IX) : ils forment une famille de quasi-particules bosoniques à longue durée de vie, dont le moment dipolaire est orienté selon l'axe de croissance du puits. Les IX sont considérés comme un système modéle pour l'étude des états collectifs dans les gaz quantiques bosoniques. Ils sont aussi prometteurs pour le développement de dispositifs excitoniques. Leur longue durée de vie, leur répulsion dipolaire, permettent aux IXs de se déplacer sur de grandes distances avant de se recombiner, ce qui offre la possibilité d'étudier le transport d'exciton par imagerie optique. Dans cette thèse, nous abordons le transport des IXs dans des puits quantiques de GaN/(Al,Ga)N et de ZnO/(Mg,Zn)O. Ce choix de matériau est motivé par l'énergie de liaison élevée des IXs ainsi obtenue. Elle est suffisamment élevée pour, en thèorie, stabiliser les IXs jusqu'à la température ambiante. Mais ce choix poseaussi un certain nombre de défis expérimentaux, car (i) le temps de vie radiatifdépend fortement de la densité d'excitons, ce qui rend la mesure de la densitéexcitonique très complexe ; (ii) la recombinaison non radiative activée thermiquement supprime le signal de photoluminescence excitonique à température ambiante ; (iii) la propagation excitonique coexiste avec une propagation photonique le long du plan du puit quantique, ce qui complique l'analyse ; (iv) il existe un fort champ électrique le long de l'axe de croissance, et aussi desuctuations dans l'épaisseur du puits quantique, ce qui crée un fort élargissement inhomogène de l'émission excitonique. Nous avons abordé toutes ces questions et nous démontrons dans ce travail que les excitons se propagent effectivement dans le plan du puits quantique. Nous arrivons à cette conclusion en combinant des expériences de micro-photoluminescence en régime continu avec des mesures de spectroscopie résolues en temps, et en comparant nos données expérimentales avec divers modèles numériques basés sur les équations dedérive et de diffusion. Dans du matériau de qualité, des puits GaN/(Al,Ga)N obtenus sur substrats GaN, nous avons observé une propagation à temprature ambiante sur plus de 10 µm, et sur plus de 20 µm à 4 K. Nos résultats suggérent que la propagation des excitons sous excitation à onde continue est facilitée par l'écrantage du désordre par les excitons. Néanmoins, la propagation excitonique est encore limitée par la diffusion des excitons sur les défautsiii plutôt que par la diffusion exciton-exciton. Ainsi, l'amélioration de la qualité des interfaces du puits quantique pourrait encore permettre une propagation excitonique sur de plus grandes distances. / This thesis is devoted to experimental study of excitons in polar quantum wells(QWs) based on wide band-gap semiconductors. Due to wurtzite crystal structureof these materials, electron and hole are separated in the QW growth axis, sothat excitons can be considered as indirect excitons (IX), a family of long-living bosonic quasi-particles with dipole moment oriented along the QW growth axis. IX are considered as a model system for studies of collective states in quantum gases of bosons, and are also promising for the development of excitonic circuit devices. Long lifetimes and dipole repulsion allow IXs to travel over large distances before recombination providing the opportunity to study exciton transport by optical imaging. In this thesis we address IX transport in a set of GaN/(Al,Ga)N and ZnO/(Mg,Zn)O QWs. This choice of IX is motivated by high binding energy, and potential stability up to room temperature, but present a number of experimental challenges, including (i) dramatic dependence of the exciton radiative lifetime on the exciton density that makes exciton density measurement very complex, (ii) thermally activated nonradiative recombination that quenches exciton PL at room temperature,(iii) coexistence of photon propagation with exciton propagation along the QW plane, and strong inhomogeneous broadening of the exciton emission due to strong built-in electric field and the presence of both monolayeructuations of the QW thickness and the fluctuations of alloy composition in the barriers. We have addressed all these issues and demonstrated exciton propagation by combining continuous wave µ-photoluminescence and time-resolved spectroscopy measurements, supplemented by modelling of the exciton transport within drift-diffusion formalism. In the best quality GaN/(Al,Ga)N QWs grown on free-standing GaN substrates we achieved room-temperature propagation over ~10 µm and up to 20 µm at 4 K. Our results suggest that propagation of excitons under continuous-wave excitation is assisted by effcient screening of the in-plane disorder. Nevertheless, exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scatteringso that improving interface quality can boost exciton transport further.

Identiferoai:union.ndltd.org:theses.fr/2016MONTT324
Date15 December 2016
CreatorsFedichkin, Fedor
ContributorsMontpellier, Lefebvre, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0015 seconds