Return to search

Modelo predictivo basado en machine learning de ordenes de trabajo riesgosas para mantenimiento de equipos mineros

Memoria para optar al título de Ingeniero Civil Industrial / Objetivo: Desarrollar un modelo predictivo que permita al área de Supply de BHP Minerals Americas hacer gestión proactiva sobre ordenes de trabajo de mantenimiento con requerimiento de materiales y pudiendo anticiparse así a posibles caídas en el indicador WOPIFOT de nivel de servicio de Supply. Contexto: El área de Supply funciona como una balanza entre los requerimientos de materiales y servicios para la operación y los objetivos económicos del negocio, optimizando la relación costo/disponibilidad de materiales. WOPIFOT es un indicador binario de nivel de servicio de Supply que mide para cada orden de trabajo si esta fue completada satisfactoriamente y con todos los materiales requeridos. Durante el año fiscal 2017, el promedio fue de 85 %, o en otras palabras, 15 % de las órdenes de trabajo no se desarrollaron correctamente. Esto supone que existen oportunidades de mejora en el ámbito de disponibilidad de materiales y disciplina operacional que pueden ser apoyadas con la implementación de una herramienta de detección temprana de OTs con riesgo de fallas.Hipótesis: Existen patrones históricos de fallas a nivel de materiales y su relación con otras variables como horizonte de planificación, impacto en el negocio del material, sistema de control de inventario, entre otras, que permite desarrollar un modelo predictivo basado en herramientas de machine learning que detecte estos patrones y también su evolución en el tiempo al modificarse la cultura operacional a medida que se haga gestión sobre las fallas. Diseño: Se propone desarrollar una herramienta basada en el algorítmo Gradient BoostingTrees que cargue los datos de órdenes de trabajo abiertas en el periodo y las clasifique en riesgosas o no riesgosas de acuerdo al comportamiento histórico de sus componentes y otras características y asigne una posible causa de falla para apoyar la gestión.Resultados: El algoritmo de GBT entrenado con 9 variables relativas a las órdenes de trabajos y materiales genera un modelo cuyas métricas de desempeño teóricas en un testeo con datos fuera de muestra, realizado en mayo/2018 con un modelo entrenado con datos históricos hasta abril/2018 son prometedores, con un accuracy de 82,2 %, Cohen s Kappa de 0,625 y AUC de 0,731, lo que permitiría en el caso ideal, aumentar el indicador WOPIFOT PM01 en Spence a sobre 80 %en caso de que las acciones y gestión proactiva sean eficaces.Conclusión: Incluir nuevas tecnologías de analytics y data science permiten agregar valor en una industria que está constantemente enfocada en la mejora de la producción y donde existen oportunidades reales de mejorar los procesos. Automatizar los procesos de análisis de datos,mediante por ejemplo algoritmos de aprendizaje de máquinas permite a los profesionales dedicar menos tiempo en análisis y reportabilidad y enfocar recursos en gestión y decisión.La gestión del cambio es una etapa fundamental en la utilización de estas nuevas tecnologías. / BHP

Identiferoai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/170038
Date January 2018
CreatorsBarroso Salgado, Javier Antonio
ContributorsCalisto Leiva, Ignacio, Santibáñez Viani, Edgardo, Vildoso Castillo, Felipe
PublisherUniversidad de Chile
Source SetsUniversidad de Chile
LanguageSpanish
Detected LanguageSpanish
TypeTesis
RightsAttribution-NonCommercial-NoDerivs 3.0 Chile, http://creativecommons.org/licenses/by-nc-nd/3.0/cl/

Page generated in 0.0021 seconds