Return to search

Stratégies numériques innovantes pour l’assimilation de données par inférence bayésienne / Development of innovative numerical strategies for Bayesian data assimilation

Ce travail se place dans le cadre de l'assimilation de données en mécanique des structures. Il vise à développer de nouveaux outils numériques pour l'assimilation de données robuste et en temps réel afin d'être utilisés dans diverses activités d'ingénierie. Une activité cible est la mise en œuvre d'applications DDDAS (Dynamic Data Driven Application System) dans lesquelles un échange continu entre les outils de simulation et les mesures expérimentales est requis dans le but de créer une boucle de contrôle rétroactive sur des systèmes mécaniques connectés. Dans ce contexte, et afin de prendre en compte les différentes sources d'incertitude (erreur de modélisation, bruit de mesure,...), une méthodologie stochastique puissante est considérée dans le cadre général de l’inférence bayésienne. Cependant, un inconvénient bien connu d'une telle approche est la complexité informatique qu’elle engendre et qui rend les simulations en temps réel et l'assimilation séquentielle des données difficiles.Le travail de thèse propose donc de coupler l'inférence bayésienne avec des techniques numériques attrayantes et avancées afin d'envisager l’assimilation stochastique de données de façon séquentielle et en temps réel. Premièrement, la réduction de modèle PGD est introduite pour faciliter le calcul de la fonction de vraisemblance, la propagation des incertitudes dans des modèles complexes et l'échantillonnage de la densité a posteriori. Ensuite, l'échantillonnage par la méthode des Transport Maps est étudiée comme un substitut aux procédures classiques MCMC pour l'échantillonnage de la densité a posteriori. Il est démontré que cette technique conduit à des calculs déterministes, avec des critères de convergence clairs, et qu'elle est particulièrement adaptée à l'assimilation séquentielle de données. Là encore, l'utilisation de la réduction de modèle PGD facilite grandement le processus en utilisant les informations des gradients et hessiens d'une manière simple. Enfin, et pour accroître la robustesse, la correction à la volée du biais du modèle est abordée à l'aide de termes d'enrichissement fondés sur les données. Aussi, la sélection des données les plus pertinentes pour l’objectif d’assimilation est abordée.Cette méthodologie globale est appliquée et illustrée sur plusieurs applications académiques et réelles, comprenant par exemple le recalage en temps réel de modèles pour le contrôle des procédés de soudage, ou l’étude d'essais mécaniques impliquant des structures endommageables en béton instrumentées par mesures de champs. / The work is placed into the framework of data assimilation in structural mechanics. It aims at developing new numerical tools in order to permit real-time and robust data assimilation that could then be used in various engineering activities. A specific targeted activity is the implementation of DDDAS (Dynamic Data Driven Application System) applications in which a continuous exchange between simulation tools and experimental measurements is envisioned to the end of creating retroactive control loops on mechanical systems. In this context, and in order to take various uncertainty sources (modeling error, measurement noise,..) into account, a powerful and general stochastic methodology with Bayesian inference is considered. However, a well-known drawback of such an approach is the computational complexity which makes real-time simulations and sequential assimilation some difficult tasks.The PhD work thus proposes to couple Bayesian inference with attractive and advanced numerical techniques so that real-time and sequential assimilation can be envisioned. First, PGD model reduction is introduced to facilitate the computation of the likelihood function, uncertainty propagation through complex models, and the sampling of the posterior density. Then, Transport Map sampling is investigated as a substitute to classical MCMC procedures for posterior sampling. It is shown that this technique leads to deterministic computations, with clear convergence criteria, and that it is particularly suited to sequential data assimilation. Here again, the use of PGD model reduction highly facilitates the process by recovering gradient and Hessian information in a straightforward manner. Eventually, and to increase robustness, on-the-fly correction of model bias is addressed using data-based enrichment terms.The overall cost-effective methodology is applied and illustrated on several academic and real-life test cases, including for instance the real-time updating of models for the control of welding processes, or that of mechanical tests involving damageable concrete structures with full-field measurements.

Identiferoai:union.ndltd.org:theses.fr/2019SACLN055
Date15 October 2019
CreatorsRubio, Paul-Baptiste
ContributorsUniversité Paris-Saclay (ComUE), Chamoin, Ludovic
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds