Neste trabalho estudamos a dinâmica assintótica de problemas parabólicos sob vista de diferentes teorias, particularmente interessados na estabilidade das propriedades dinâmicas dos sistemas. Estudamos a equi-atração no caso não autônomo pelos semifluxos skew-product, que transformam o sistema dinâmico não autônomo em um autônomo num espaço de fase conveniente. Para modelos multívocos, em que o semifluxo é uma função cujos valores são conjuntos, desenvolvemos a decomposição de Morse e mostramos sua equivalência com a existência de um funcional de Lyapunov, que é um resultado muito importante na teoria de semigrupos. Também estudamos a continuidade da dinâmica assintótica de um problema parabólico em um domínio ilimitado quando o aproximamos por domínios limitados específicos. / In this work we study assimptotic properties of parabolic problems under some different view of points, particularlly interested in the stability properties of the systems. We study equi-attraction in the non autonomous case using skew-product semiflows, which transform the non autonomous dynamical system into a autonomous one in a convenient phase space. For multivalued semiflows, in which the semiflow is a set valued function, we develop the Morse decomposition and show its equivalence with admiting a Lyapunov funcional, wich is a important result on the semigroup theory. We also study the continuity of the asymptotic dynamic for a parabolic problem in an unbouded domain when we approach it by bounded ones.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07112016-151031 |
Date | 28 July 2016 |
Creators | Costa, Henrique Barbosa da |
Contributors | Carvalho, Alexandre Nolasco de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds