Return to search

Essays on bivariate option pricing via copula and heteroscedasticity models: a classical and bayesian approach / Ensaios sobre precificação de opções bivariadas via cópulas e modelos heterocedásticos: abordagem clássica e bayesiana

This dissertation is composed of two main and independents essays, but complementary. In the first one, we discuss the option price under a bayesian perspective. This essay aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy. In the second chapter, we consider the GARCH-in-mean models with asymmetric variance specifications to model the volatility of the assets-objects under the risk-neutral dynamics. Moreover, the copula functions model the joint distribution, with the objective of capturing non-linear, linear and tails associations between the assets. We aim to provide a methodology to realize a more realistic pricing option. To illustrate the methodology, we use stocks from two Brazilian companies, where our the modeling offered a proper fitting. Confronting the results obtained with the classic model, which is an extension of the Black and Scholes model, we note that considering constant volatility over time underpricing the options, especially in-the-money options. / Essa dissertação é composta por dois principais ensaios independentes e complementares. No primeiro discutimos a precificação de opções bivariadas sob uma perspectiva bayesiana. Neste ensaio o principal objetivo foi precificar e analizar o preço justo da opção bivariada call-onmax considerando modelos heterocedásticos para as marginais e a modelagem de dependência realizada por funções cópulas. Para a inferência, adotamos o método computacionalmente intensivo baseado em simulações Monte Carlo via Cadeia de Markov (MCMC). Um estudo de simulação examinou o viés e o erro quadrático médio dos parâmetros a posteriori. Para a ilustração da abordagem, foram utilizados preços de ações de bancos Brasileiros. Além disso, foi verificado o efeito do strike e da estrutura de dependência nos preços das opções. Os resultados mostraram que os preços obtidos pelo método utilizado difere substancialmente dos obtidos pelo modelo clássico derivado de Black e Scholes. No segundo capítulo, consideramos os modelos GARCH-in-mean com especificações assimétricas para a variância com o objetivo de acomodar as características da volatilidade dos ativos-objetos sob uma perspectiva da dinâmica do risco-neutro. Além do mais, as funções cópulas foram utilizadas para capturar as possíveis estruturas de dependência linear, não-linear e caudais entre os ativos. Para ilustrar a metodologia, utilizamos dados de duas companhias Brasileiras. Confrontando os resultados obtidos com o modelo clássico extendido de Black e Scholes, notamos que a premissa de volatilidade constante sub-precifica as opções bivariadas, especialmente dentro-do-dinheiro.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06082019-155540
Date15 February 2019
CreatorsLopes, Lucas Pereira
ContributorsCancho, Vicente Garibay
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0026 seconds