An image that has been subject to the out-of-focus phenomenon has reducedsharpness, contrast and level of detail depending on the amount of defocus. Torestore out-of-focused images is a complex task due to the information loss thatoccurs. However there exist many restoration algorithms that attempt to revertthis defocus by estimating a noise model and utilizing the point spread function.The purpose of this thesis, proposed by FLIR Systems, was to find a robustalgorithm that can restore focus and from the customer’s perspective be userfriendly. The thesis includes three implemented algorithms that have been com-pared to MATLABs built-in. Three image series were used to evaluate the limitsand performance of each algorithm, based on deblurring quality, implementationcomplexity, computation time and usability.Results show that the Alternating Direction Method for total variation de-convolution proposed by Tao et al. [29] together with its the modified discretecosines transform version restores the defocused images with the highest qual-ity. These two algorithms include features such as, fast computational time, fewparameters to tune and a powerful noise reduction.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-58023 |
Date | January 2010 |
Creators | Zhu, Peter |
Publisher | Linköpings universitet, Institutionen för teknik och naturvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds