Return to search

Mechanistic studies of the MenD-catalyzed reaction

MenD, a thiamin diphosphate (ThDP)-dependent enzyme, catalyzes the reaction from isochorismate (ISC) to 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC), and thus is also called SEPHCHC synthase. This conversion is the first committed step in the classical menaquinone (Vitamin K2) biosynthetic pathway, requiring 2-ketoglutarate (2-KG), ThDP and Mg<sup>2+</sup>. Since the biosynthesis of menaquinone is essential in some bacterial pathogens, for example <i>Mycobacterium tuberculosis</i>, MenD or the menaquinone pathway could be a target for drug development.<p>
The method for the kinetic assay of the MenD-catalyzed reaction was evaluated by comparing UV spectrophotomeric measurements and HPLC analysis. It was validated that the steady-state kinetics of the MenD-catalyzed reaction can be determined by monitoring UV absorbance of ISC at 278 nm and 300 nm.<p>
Phosphonate analogues of 2-KG were synthesized and assayed as inhibitors of the MenD reaction. It was found that the phosphonate analogues of 2-KG are competitive inhibitors with varied affinity for MenD. Of the inhibitors, monomethyl succinyl phosphonate (MMSP) was the most effective, with a <i>K</i><sub>i</sub> of 700 nM. However, the potent MenD inhibitors show no effectiveness against mycobacterial growth.<p>
An analogue of isochorismate, trans-(±)-5-carboxymethoxy-6-hydroxy-1,3-cyclohexadiene-1-carboxylate ((±)-CHCD), was synthesized. The (+)-CHCD was found to be an alternative substrate for the MenD-catalyzed reaction. When CHCD was utilized in the MenD reaction, 5-carboxymethoxy-2-(3-carboxy-propionyl)-6-hydroxy-cyclohex-2-enecarboxylate (CCHC) was isolated and characterized, which was believed to be the product of spontaneous isomerization of the SEPHCHC-like analogue. The kinetic study of MenD reaction using (±)-CHCD, in association with the kinetics pattern probed by MMSP, demonstrated for the first time that the MenD-catalyzed reaction has a Ping Pong bi bi kinetic mechanism.<p>
The analysis of sequence and structure of MenD from E. coli allowed the investigation of the active site residues and their catalytic functions by mutation of the individual residues. S32A, S32D, R33K, R33Q, E55D, R107K, Q118E, K292Q, R293K, S391A, R395A, R395K, R413K and I418L were prepared and assayed kinetically with respect to 2-KG, ISC, (±)-CHCD, ThDP and Mg<sup>2+</sup>. The values of <i>K</i><sub>m</sub><sup>a</sup> and <i>k</i><sub>cat</sub><sup>a</sup>/<i>K</i><sub>m</sub><sup>a</sup> for the mutants, in comparison with that of wild type MenD, provide valuable insight into the catalytic mechanism of MenD.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-11232010-102240
Date24 November 2010
CreatorsFang, Maohai
ContributorsPalmer, David R. J., Honek, John F., Gravel, Michel, Dimmock, J. R., Sanders, David A. R., Ward, Dale E.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-11232010-102240/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds