The cellular mechanisms by which nervous systems evolve to match evolutionary changes occurring in the rest of the body remain largely unexplored. In a distal visual neuropil of a previously unexamined ancient dipteran family, Stratiomyidae, homologues of all of the periodic neurons known already from more recent Diptera can be recognized, occupying the same locations within the unit structure. This points to extreme developmental stasis for more than 200 million years, conserving both cell identity and position. The arborizations that some neurons make also have remained conservative, but others show marked differences between families in both size and branching patterns. At the electron-microscopical level, extensive differences in synaptic connectivity are found, some sufficient to radically redefine the systems roles of particular neurons. The findings bear out an earlier prediction that changes in the connectivity matrix linking conserved neurons may have been a major factor in implementing evolutionary change in the nervous system.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-14815 |
Date | 01 January 1989 |
Creators | Shaw, S. R., Moore, D. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0021 seconds