Return to search

Une nouvelle approche thérapeutique de l'insuffisance cardiaque ischémique associant l'assistance biologique et l'assistance mécanique / An innovative therapeutic strategy of ischemic heart failure associating regenerative therapy and mechanical assist

L'insuffisance cardiaque (IC) chronique représente la pathologie la plus fréquente nécessitant l'hospitalisation chez les patients de plus de 65 ans. La mortalité à 5 ans est estimée à plus de 50% et les enjeux en terme d’économie et de santé publique sont immenses. Parmi de nombreuses étiologies, les cardiopathies ischémiques sont la cause principale de l’IC. Sur les quinze dernières années, de nombreuses études précliniques et cliniques ont confirmé le potentiel thérapeutique des cellules souches d’améliorer la fonction cardiaque et d’atténuer le remodelage ventriculaire. Néanmoins, beaucoup de questions fondamentales liées à la thérapie régénératrice avec les cellules souches restent à résoudre. Parmi les raisons expliquant l'inefficacité de la thérapie cellulaire figurent l'intégration et la survie compromises des cellules greffées dans un microenvironnement défavorable au sein de tissus infarcis ainsi que la présence d'inflammation, de stress oxydatif, d'hypoxie sévère et de privation des nutriments. Une des approches pour améliorer la thérapie cellulaire serait d’adapter le milieu de culture des cellules in vitro en terme de concentration en oxygène afin qu’il soit plus proche des conditions in vivo. Notre étude a bien montré que le préconditionnement des cellules souches mésenchymateuses (CSMs) à l’hypoxie permettait de promouvoir la croissance cellulaire tout en gardant leur potentiel de différenciation trilignée. De plus, notre étude in vivo montrait que les CSMs cultivées en hypoxie, par rapport à celles cultivées en normoxie, présentaient un meilleur potentiel thérapeutique : amélioration de la viabilité dans la zone infarcie, augmentation de la contractilité intrinsèque et favorisation du processus d’angiogénèse, etc. Force est de constater que la récupération de la fonction cardiaque sous dispositifs d'assistance ventriculaire (bridge to recovery) pose un jalon dans le traitement de l'insuffisance cardiaque. Le phénomène « bridge to recovery » nous a permis d'approfondir la connaissance sur la physiopathologie du remodelage ventriculaire, qui était considéré comme un processus unidirectionnel. Cependant, plusieurs controverse existent sur la stratégie ‘Bridge to Recovery’. Une des questions les plus soulevées est s'il y a une limite à la durée et à l'intensité de la décharge ventriculaire afin d'éviter ses effets secondaires. Pour simuler les décharges mécaniques ventriculaires d'intensités différentes, nous avons mis au point deux modèles de transplantation cardiaque hétérotopique (TCH), cœur seul ou cœur-poumon, mimant respectivement la décharge complète et la décharge partielle. Notre étude montrait que la décharge mécanique résultait d’une atrophie myocardique, d’une réduction du métabolisme glucidique, d’une fibrose cardiaque et d’une altération de fonction cardiaque diastolique. Les effets étaient tous dépendants des intensités de décharge. Notre travail s'insère dans la thématique générale du laboratoire, qui est de développer un programme de recherche sur les approches thérapeutiques innovantes pour traiter l'infarctus du myocarde et l'IC chronique. Dans la première partie de notre projet, nous avons cherché à clarifier les effets de l'injection intramyocardique de CSMs d'origine médullaire dans la zone infarcie sur la perfusion et la fonction cardiaque (étude n°1). Nous avons ensuite étudié l'impact de la culture cellulaire en hypoxie des CSMs dérivées de moelle osseuse sur leurs caractéristiques biologiques et leur potentiel thérapeutique (étude n°2). Enfin, nous avons caractérisé les effets de décharges mécaniques d'intensités différentes sur le remodelage ventriculaire du cœur sain, sur le plan morphologique, fonctionnel et métabolique (étude n°3) / Heart failure (HF) represents one of the most frequent disease requiring hospitalization in the old population (>65 years old). The 5-year survival rates associated with heart failure are less than 50% and it results in a huge cost on social economy and public health. Ischemic heart diseases represent one of the most frequent etiologies of the heart failure. Over the last fifteen years, many preclinical and clinical studies have confirmed the therapeutic potential of stem cells to improve heart function and reduce ventricular remodeling. The failure of cell therapy can be ascribed to some extent to the poor integration and compromised survival of grafted cells in an unfavorable microenvironment in infarcted tissue which is complicated by the presence of inflammation, oxidative stress, hypoxia and severe deprivation of nutriments. Furthermore, bone marrow stem cells are physiologically located in a hypoxic environment. The adaptation of the in vitro culture medium, in terms of oxygen concentration, to the in vivo natural niche as well as the targeted area, might be one of solutions to improve the efficacy of cell therapy. One of our studies has demonstrated that preconditioning of mesenchymal stem cells (MSCs) with hypoxia could promote cell proliferation without altering the differentiation potential. What’s more, our in vivo study showed that hypoxia-preconditioned MSCs, compared with those cultured in normoxia, presented with better therapeutic efficiency, such as improvement of the myocardial viability in the infarcted area, increase of intrinsic contractility and favoring the processes of angiogenesis. The recovery of cardiac function with ventricular assist devices (bridge to recovery) is a milestone in the treatment of heart failure. The phenomenon "bridge to recovery" has enabled us to deepen the knowledge on the physiopathology of ventricular remodeling, which was considered to be a one-way process. However, the strategy of ‘Bridge to Recovery’ causes many controversies. One of the arisen questions is if there exists a limit in terms of the duration and intensity regarding the mechanical unloading in order to minimize its secondary complications. To simulate ventricular mechanical unloading of different intensities, we have developed two models of heterotopic heart transplantation (TCH), namely, heterotopic heart transplantation (HHT) and heterotopic heart-lung transplantation to simulate complete and partial unloading, respectively. Our study revealed that mechanical unloading resulted in myocardial atrophy, cardiac fibrosis and diastolic dysfunction. These secondary effects were dependent on the intensity of unloading. Our work fits into the general theme of the laboratory, which is to develop a research program on innovative therapeutic approaches to treat myocardial infarction and chronic heart failure. In the first part of our study, we sought to clarify the effects of bone marrow-derived MSCs following intramyocardial injection on the perfusion and function of the infarcted myocardium (study 1). We then investigated the impact of long-term hypoxic culture on the biological characteristics and therapeutic potential of MSCs (study 2). Finally, we explored the effects of mechanical unloading of different intensities on the structure, function and metabolism of healthy myocardium (Study 3)

Identiferoai:union.ndltd.org:theses.fr/2015LORR0072
Date08 July 2015
CreatorsLiu, Yihua
ContributorsUniversité de Lorraine, Marie, Pierre-Yves, Maureira, Juan Pablo, Tran, Nguyen
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds