La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par le 16e problème de Hilbert. Les résultats obtenus dans cette thèse concernent des systèmes différentiels quadratiques intégrables perturbés pour lesquels on met en oeuvre une adaptation d'un algorithme théorique proposé par Jean-Pierre Françoise permettant le calcul des dérivées successives de l'application de premier retour, encore appelées fonctions de Melnikov. Le premier exemple étudié est de type Liénard et présente un centre en l'origine. Le calcul par deux méthodes différentes de la première fonction de Melnikov assure l'existence d'un cycle limite pour le système perturbé. Dans certains cas, on calcule les fonctions de Melnikov d'ordre supérieur et on donne des conditions pour lesquelles le système reste à centre. Le second exemple est issu d'une équation d'Abel remarquée par Liouville, dont l'étude des singularités à l'infini fait apparaître une singularité non hyperbolique avec domaine elliptique. On perturbe quadratiquement une forme normale quadratique présentant cette singularité. Le calcul des trois premières fonctions de Melnikov assure l'existence de perturbations faisant apparaître deux cycles limites. D'autre part, on est en mesure de donner certains cas intégrables ainsi que la nature algébrique des fonctions de Melnikov d'ordre supérieur. Dans le troisième exemple, on étudie une famille de systèmes présentant soit une singularité avec deux secteurs elliptiques, soit un centre et une singularité avec un domaine elliptique. On espère trouver une perturbation quadratique générant quatre cycles limites imbriqués deux à deux. L'étude des fonctions de Melnikov jusqu'à l'ordre deux ne révèle cependant que l'existence de perturbations pour lesquelles on a deux cycles autour de l'un des centres et un seul autour de l'autre.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00437848 |
Date | 14 November 2009 |
Creators | Gentes, Mathieu |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds