Return to search

Development of Capillary Electrophoresis Methods Coupled to Mass Spectrometry for Biomedical and Pharmaceutical Analysis

The analysis of large intact proteins and complex biological samples containing drug molecules is a common complicated task for many scientists. However, due to the importance of these molecules, there is a growing interest in pharmaceutical and medicinal research to develop rapid, highly sensitive and efficient analytical techniques. The advantages of capillary electrophoresis (CE) in combination with mass spectrometry (MS) provide a powerful analytical tool. However, further improvement and development of these techniques are required to extend their utility and to meet the challenges of selected analytes. Thus, the scope of this thesis deals with the development of novel analytical methods to achieve efficient and high performance analysis of peptides, intact proteins, digests of complex samples and basic pharmaceutical drug compounds in biological matrices. Implementation of CE for routine analysis of proteins and complex samples is constrained by the partial adsorption to the capillary wall. Consequently, the use of surface modified capillaries is required to control the surface properties and prevent analyte adsorption. In this thesis, analyte adsorption was successfully prevented using tailored covalent cationic (M7C4I) and electrostatic cationic (PVPy-Me) coatings. Rapid and efficient separations of peptides, proteins and digests of complex samples such as cerebrospinal fluids were obtained with these coatings. The M7C4I coating showed a distinct ability to handle large intact proteins with a molecular size of over 0.5 MDa. The highest peak efficiencies and surprisingly high peak stacking effects were obtained by adding salts to the protein samples. The effect of salt additives on peak efficiencies of intact proteins was further demonstrated and compared using different surface modified capillaries. Additionally, rapid CE-ESI-MS quantification of pharmaceutical drug molecules in human plasma was performed after a SCX-SPE sample preparation method using the M7C4I coating. In conclusion, the results presented in this thesis show the strong potential of CE in combination with MS using electrospray ionization (ESI) for the analysis of peptides and large intact proteins and the applicability for clinical monitoring of the levels of pharmaceutical drug molecules in human plasma with high sensitivity and efficiency. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 734

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-143814
Date January 2011
CreatorsElhamili, Anisa
PublisherUppsala universitet, Analytisk kemi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 804

Page generated in 0.002 seconds