Return to search

Cutting Planes for Large Mixed Integer Programming Models

In this thesis I focus on cutting planes for large Mixed Integer Programming (MIP) problems. More specifically, I focus on two independent cutting planes studies. The first of these deals with cutting planes for the Traveling Salesman Problem (TSP), and the second with cutting planes for general MIPs.

In the first study I introduce a new class of cutting planes which I call the Generalized Domino Parity (GDP) inequalities. My main achievements with regard to these are: (1) I show that these are valid for the TSP and for the graphical TSP. (2) I show that they generalize most well-known TSP inequalities (including combs, domino-parity constraints, clique-trees, bipartitions, paths and stars). (3) I show that a sub-class of these (which contains all clique-tree inequalities w/ a fixed number of handles) can be separated in polynomial time, on planar graphs.

My second study can be subdivided in two parts. In the first of these I study the Mixed Integer Knapsack Problem (MIKP) and develop a branch-and-bound based algorithm for solving it. The novelty of the approach is that it exploits the notion of "dominance" in order to effectively prune solutions in the branch-and-bound tree. In the second part, I develop a Mixed Integer Rounding (MIR) cut separation heuristic, and embed the MIKP solver in a column generation algorithm in order to assess the performance of said heuristic. The goal of this study is to understand why no other class of inequalities derived from single-row systems has been able to outperform the MIR. Computational results are presented.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/13956
Date13 November 2006
CreatorsGoycoolea, Marcos G.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format1425451 bytes, application/pdf

Page generated in 0.0019 seconds