In future, computing platforms will invoke massive parallelism by using a huge number of processing elements. These elements need broadband interconnects to communicate with each other. Following More-than-Moore concepts, soon large numbers of processors will be arranged in 3D chip-stacks. This trend to stack multiple dies produces a demand for high-speed intraconnects (within the 3D stack) which enable an efficient operation. Besides wireless electronic solutions (inductive or capacitive as well as using antennas), optical connectivity is an option for bit rates up to the Tbit/s range, too. We investigated different candidates for optical TSVs. For optical transmission via optical Through-Silicon-Vias, we were able to demonstrate negligible losses and dispersion.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35148 |
Date | 06 September 2019 |
Creators | Killge, Sebastian, Charania, Sujay, Neumann, Niels, Al-Husseini, Zaid, Plettemeier, Dirk, Bartha, Johann W., Henker, Ronny, Ellinger, Frank |
Publisher | SPIE |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1117/12.2270994 |
Page generated in 0.0022 seconds