La programmation linéaire permet d’effectuer l’optimisation de la gestion des réseaux de création de valeur. Dans la pratique, la taille de ces problèmes demande l’utilisation d’un ordinateur pour effectuer les calculs nécessaires, et l’algorithme du simplexe, entre autres, permet d’accomplir cette tâche. Ces solutions sont cependant construites sur des modèles approximatifs et l’humain est généralement méfiant envers les solutions sorties de « boîtes noires ». Les systèmes à initiative partagée permettent une synergie entre, d’une part, l’intuition et l’expérience d’un décideur humain et, d’autre part, la puissance de calcul de l’ordinateur. Des travaux précédents au sein du FORAC ont permis l’application de cette approche à la planification tactique des opérations des réseaux de création de valeur. L’approche permettrait l’obtention de solutions mieux acceptées. Elle a cependant une interface utilisateur limitée et contraint les solutions obtenues à un sous-espace de l’ensemble des solutions strictement optimales. Dans le cadre de ce mémoire, les principes de conception d’interface humain-machine sont appliqués pour concevoir une interface graphique plus adaptée à l’utilisateur type du système. Une interface basée sur le modèle de présentation de données de l’outil Logilab, à laquelle sont intégrées les interactivités proposées par Hamel et al. est présentée. Ensuite, afin de permettre à l’expérience et à l’intuition du décideur humain de compenser les approximations faites lors de la modélisation du réseau de création de valeur sous forme de problème linéaire, une tolérance quant à l’optimalité des solutions est introduite pour la recherche interactive de solutions alternatives. On trouvera un nouvel algorithme d’indexation des solutions à combiner et une nouvelle heuristique de combinaison convexe pour permettre cette flexibilité. Afin d‘augmenter la couverture de l’espace solutions accessible au décideur humain, un algorithme de recherche interactive de solution basé sur le simplexe est introduit. Cet algorithme présente une stabilité similaire à la méthode de Hamel et al., mais ses performances en temps de calcul sont trop basses pour offrir une interactivité en temps réel sur de vrais cas industriels avec les ordinateurs présentement disponibles.Une seconde approche d’indexation complète de l’espace solutions est proposée afin de réduire les temps de calcul. Les nouveaux algorithmes « Linear Redundancyless Recursive Research » (Recherche linéaire récursive sans redondance, LRRR) pour la cartographie et l’indexation de l’espace solutions et « N-Dimension Navigation Direction » (direction de navigation à n-dimensions, NDND) pour l’exploration interactive de celui-ci sont présentés. Ces algorithmes sont justes et rapides, mais ont cependant un coût mémoire au-delà de la capacité des ordinateurs contemporains. Finalement, d’autres pistes d’exploration sont présentées, notamment l’exploitation des méthodes du point intérieur et de l’algorithme de Karmarkar ainsi qu’une ébauche d’approche géométrique.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/67320 |
Date | 02 February 2024 |
Creators | Chéné, François |
Contributors | Gaudreault, Jonathan, Quimper, Claude-Guy |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (ix, 113 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0012 seconds