La déflection statique d'une structure flexible exposée à un écoulement transverse permet classiquement de réduire la traînée à laquelle elle est soumise. Dans le domaine de la biomécanique, la déformation induite par l'écoulement d'éléments végétaux flexibles conduisant à une réduction du chargement est désignée par le terme `reconfiguration' pour souligner le caractère avantageux de ce processus adaptatif. Dans cette thèse, nous examinons les mécanismes qui sous-tendent le processus de reconfiguration, dans des systèmes fluide-structure présentant une variabilité spatiale, ou de la dynamique provenant au choix de l'instationnarité de l'écoulement de base, d'un couplage fluide-structure conduisant à une instabilité, ou de vibrations induites par vortex. Nous montrons que l'aptitude des structures flexibles à réduire l'intensité du chargement imposé par l'écoulement est preservée en présence de non-uniformités ou de dynamique, à condition que le design de la structure soit tel que la traînée résistive domine les forces inertiels. Nous montrons de plus que la capacité à se déformer présente l'avantage supplémentaire de permettre la réduction des vibrations induites par vortex. Notre travail indique également que des structures légères et élancées sont les mieux adaptées pour supporter les chargements induits par l'écoulement en se reconfigurant, et que l'efficacité de la réduction du chargement par reconfiguration élastique dépend faiblement de la distribution spatiale des propriétés du système. Finalement, la réduction des chargements résulte toujours, indépendamment du régime de reconfiguration, de la concentration de la déformation sur une longueur caractéristique inférieure à la longueur réelle de la structure. / The static deflection of a flexible structure exposed to a transverse flow is classically known to reduce the drag it has to withstand. In the field of biomechanics, the flow-induced deformation of flexible plant elements leading to a reduction of the loads is referred to as `reconfiguration', in order to highlight the alleged benefits of such adaptive process. In this thesis, we investigate the mechanisms underpinning the reconfiguration in flow-structure systems featuring some spatial variability, or some dynamics arising either from the unsteadiness of the free-stream, from a flow-structure coupling leading to an instability, or from vortex-induced vibrations. We show that the ability of flexible structures to reduce the magnitude of the flow-induced loads is preserved in the presence of non-uniformities or dynamics, provided that the design of the structure is such that resistive drag dominates over inertial forces. We also show that the ability to deform has the added benefit of reducing the magnitude of the vortex-induced vibrations. Our work further indicates that light, slender structures are better suited to accommodate the flow-induced loads by reconfiguring, and that the efficiency of the process of load reduction by elastic reconfiguration is weakly sensitive to the spatial distribution of the system properties. Finally, regardless of the regime of reconfiguration, the reduction of the load always results from the concentration of the deformation on a characteristic bending length smaller than the actual length of the structure.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLX006 |
Date | 10 January 2018 |
Creators | Leclercq, Tristan |
Contributors | Université Paris-Saclay (ComUE), Langre, Emmanuel de, Peake, Nigel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds