We have used the Hubble STIS and FUSE archives of ultraviolet spectra of bright AGNs to identify intergalactic Lya absorbers in nearby (z ≤ 0.1) voids. From a parent sample of 651 Lyα absorbers, we identified 61 "void absorbers" located >1.4 h70-1 Mpc from the nearest L* or brighter galaxy. Searching for metal absorption in high-quality (S/N > 10) spectra at the location of three diagnostic metal lines (O VI λ1032, C IV λ1548, Si III λ1206), we detected no metal lines in any individual absorber, or in any group of absorbers using pixel co-addition techniques. The best limits on metal-line absorption in voids were set using four strong Lya absorbers with NHI > 1014 cm-2, with 3 σ equivalent-width limits ranging from 8 mÅ (O VI) to 7-15 mÅ (C IV) and 4-10 mÅ (Si III). Photoionization modeling yields metallicity limits Z < 10 -1.8±0.4 Z⊙ from nondetections of C IV and VI, some ∼6 times lower than those seen in Lyα/O VI absorbers at z < 0.1. Although the void Lyα absorbers could be pristine material, considerably deeper spectra are required to rule out a universal metallicity floor produced by bursts of early star formation, with no subsequent star formation in the voids. The most consistent conclusion derived from these low-z results and similar searches at z = 3-5 is that galaxy filaments have increased their mean IGM metallicity by factors of 30-100 since z ∼ 3.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-18970 |
Date | 10 December 2007 |
Creators | Stocke, John T., Danforth, Charles W., Shull, J. Michael, Penton, Steven V., Giroux, Mark L. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0019 seconds