Les Transformation Martensitiques (TM) sont des transitions du premier ordre entre des phases cristallines qui caractérisent une classe intéressante de matériaux intelligents, les Alliages à Mémoire de Forme (AMF). Ces alliages métalliques furent découverts dans les années 1930 environ. Ils sont surtout intéressants car ils combinent deux effets particuliers : l'effet de mémoire de forme et la pseudo-élasticité. L'effet mémoire de forme consiste à mémoriser une configuration particulière et la retrouver après des cycles thermiques ou mécaniques. La Pseudo-Elasticité consiste à rejoindre des niveaux de déformation très grands qui sont, en général, plus typiques du caoutchouc que des métaux. Dans cette thèse, nous avons traité la caractérisation des transformations martensitiques en analysant des points de vue différents. La compréhension du fonctionnement des AMFs est fondamentale pour plusieurs types d'applications industrielles. Elle constitue encore un domaine de recherche très ouvert. (...) / This thesis deals with the characterization of Martensitic Transformations (MT) that are first order phase transitions among different solid states with different crystalline structures. These transitions are at the basis of the behavior of a class of smart materials, called Shape Memory Alloys (SMA). This work combines an experimental study of a mechanically-induced martensitic transformation in a Cu-Al-Be single crystal and a macroscopic model for the reproduction of permanent effects in cyclic temperature-induced and stress-induced transitions. From the experimental point of view, the novelties are in the device that has been built and used for the test and in the full-field measurement technique at the basis of the data treatment. The especially designed gravity-based device allows for a uni-axial and uni-directional tensile test with slow loading rates. Simultaneously, the full-field measurement technique, known as grid method, provides high-resolution two-dimensional strain maps during all the transformation. With all the data collected during the test, we characterize for the first time the two-dimensional strain intermittency in a number of ways, showing heavy-tailed distributions for the strain avalanching over almost six decades of magnitude. In parallel, we develop a macroscopic mathematical model for the description of fatigue and permanent effects in several kinds of martensitic transformations. We show an easy way to calibrate the model parameters in the simple one-dimensional case. Moreover, we compare the numerical results with experimental data for different tests and specimens and obtain a good qualitative agreement.
Identifer | oai:union.ndltd.org:theses.fr/2015CLF22562 |
Date | 26 March 2015 |
Creators | Barrera, Noemi |
Contributors | Clermont-Ferrand 2, Balandraud, Xavier, Biscari, Paolo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0033 seconds