Return to search

Thermal transport through SiGe superlattices

Understanding thermal transport in nanoscale is important for developing nanostructured thermolelectric materials and for heat management in nanoelectronic devices. This dissertation is devoted to understand thermal transport through SiGe based superlattices. First, we systematically studied the cross-plane thermal conductivity of SiGe superlattices by varying the thickness of Si(Ge) spacers thickness. The observed additive character of thermal resistance of the SiGe nanodot/planar layers allows us to engineer the thermal conductivity by varying the interface distance down to ~1.5 nm. Si-Ge intermixing driven by Ge surface segregation is crucial for achieving highly diffusive phonon scattering at the interfaces. By comparing the thermal conductivity of nanodot Ge/Si superlattices with variable nanodot density and superlattices with only wetting layers, we find that the effect of nanodots is comparable with that produced by planar wetting layers. This is attributed to the shallow morphology and further flattening of SiGe nanodots during overgrowth with Si. Finally, the experiments show that the interface effect on phonon transport can be weakened and even eliminated by reducing the interface distance or by enhancing Si-Ge intermixing around the interfaces by post-growth annealing. The results presented in this dissertation are expected to be relevant to applications requiring optimization of thermal transport for heat management and for the development of thermoelectric materials and devices based on superlattice structures. / Verständnis des thermischen Transport auf Nanoskala ist sowohl grundlegend für die Entwicklung nanostrukturierter Materialien, als auch für Temperaturkontrolle in nanoelektronischen Bauteilen. Diese Dissertation widmet sich der Erforschung des thermischen Transports durch SiGe basierenden Übergittern. Variationen, der Si(Ge) Schichtdicken, wurden zur systematischen Untersuchung der Normalkomponente zur Wachstumsrichtung der Wärmeleitfähigkeit, von SiGe Übergittern, genutzt. Die Beobachtung des additiven Charakters, des thermischen Widerstands, der SiGe Schichten, mit oder ohne Inselwachstum, ermöglicht die Erstellung von Strukturen mit bestimmter Wärmeleitfähigkeiten durch die Variation der Schichtdicken bis zu einer Minimaldistanz zweier Schichtübergänge von ~1.5nm. Die Ge Segregation führt zu einer Vermischung, von Si und Ge, welche eine essentielle Rolle zur diffusen Phononenstreuung spielt. Unsere Untersuchungen, von planaren Übergittern und Übergittern mit variabler Inseldichte, zeigen, dass Inseln und planare Schichten zu einer vergleichbaren Reduktion, der Wärmeleitfähigkeit, führen. Diese Beobachtung lässt sich, sowohl auf die flache Morphologie als auch die Abplattung der SiGe Inseln, aufgrund der Überwachsung mit Si, zurückführen. Die Experimente zeigen außerdem, dass sich der Barriereneffekt, der Schichtgrenzen, durch Reduktion der Schichtabstände und durch verstärkte Vermischung im Bereich der Schichtgrenzen, durch Erhitzung, eliminieren lässt. Die präsentierten Messungen sind sowohl, für die Entwicklung jener Bauteile, die eine Optimierung des thermischen Transports oder Temperaturmanagment erfordern, als auch von thermoelektrischen Matieralien und Bauteilen, basierend auf Übergittern, relevant.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:20177
Date21 November 2014
CreatorsChen, Peixuan
ContributorsSchmidt, Oliver G., Rastelli, Armando, Technische Universität Chemnitz
PublisherUniversitätsverlag der Technischen Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds