Internalin J (InlJ) gehört zu der Klasse der bakteriellen, cysteinhaltigen (leucine-rich repeat) LRR Proteine. Bei den Internalinen handelt es sich um meist invasions-assoziierte Proteine der Listerien. Die LRR-Domäne von InlJ ist aus 15 regelmäßig wiederkehrenden, stark konservierten Sequenzeinheiten (repeats, 21 Aminosäuren) aufgebaut. Ein interessantes Detail dieses Internalins ist das stark konservierte Cystein innerhalb der repeats. Daraus ergibt sich eine ungewöhnliche Anordnung von 12 Cysteinen in einem Stapel. Die Häufigkeit von Cysteinen in InlJ ist für ein extrazelluläres Protein von L. monocytogenes außergewöhnlich, und die Frage nach ihrer Funktion daher umso brennender.
Im Vergleich zum ubiquitären Vorkommen der sogenannten repeat-Proteine in der Natur sind Studien zu ihrer Stabilität und Faltung nicht äquivalent vertreten. Die zentrale Eigenschaft der repeat-Proteine ist ihr modularer Aufbau, der durch einfache Topologie gekennzeichnet ist und auf kurzreichenden Wechselwirkungen basiert. Diese Topologie macht repeat-Proteine zu idealen Modellproteinen, um die stabilitätsrelevanten Wechselwirkungen zu separieren und zuzuordnen.
In der vorliegenden Arbeit wurde die Faltung und Entfaltung von InlJ umfassend charakterisiert und die Relevanz der Cysteine näher beleuchtet. Die spektroskopische Charakterisierung von InlJ zeigte, dass dessen Faltungszustand durch zwei Tryptophane im N- und C-Terminus fluoreszenzspektroskopisch gut zugänglich ist. Die thermodynamische Stabilität wurde mittels fluoreszenz-detektierten, Guanidiniumchlorid-induzierten Gleichgewichtsexperimenten bestimmt. Um die kinetischen Eigenschaften von InlJ zu erfassen, wurden die Faltungs- sowie die Entfaltungsreaktion spektroskopisch untersucht. Die Identifizierung der produktiven Faltungsreaktion war lediglich durch die Anwendung des reversen Doppelsprungexperiments möglich. Die Auswertung erfolgte nach dem Zweizustandsmodell, wonach die Faltung dem „Alles-oder-Nichts“ Prinzip folgt. Die Gültigkeit dieser Annahme wurde durch die kinetische Charakterisierung bestätigt. Es wurde sowohl in den Gleichgewichtsexperimenten als auch in den kinetisch erhaltenen Daten eine hohe freie Stabilisierungsenthalpie festgestellt. Die hohe Stabilität von InlJ geht mit hoher Kooperativität einher. Die kinetischen Daten zeigen zudem, dass die hohe Kooperativität hauptsächlich der Faltungsreaktion entstammt. Der Tanford-Wert von 0.93 impliziert, dass die Oberflächenänderung während der Faltung bereits zum größten Teil erfolgt ist, bevor der Übergangszustand ausgebildet wurde.
Direkte strukturelle Informationen über den Übergangszustand wurden mit Hilfe von Mutationsstudien erhalten. Zu diesem Zweck wurden 12 der 14 Cysteine gegen ein Alanin ausgetauscht. Die repeats 1 bis 11 von InlJ beinhalten jeweils ein Cystein, deren Anordnung eine Leiter ergibt. Deren Substitutionen haben einen vergleichbar destabilisierenden Effekt auf InlJ von durchschnittlich 4.8 kJ/mol. Die Verlangsamung der Faltung deutet daraufhin, dass die Interaktionen der repeats 5 bis 11 im Übergangszustand bereits voll ausgebildet sind. Demnach liegt bei InlJ ein zentraler Faltungsnukleus vor.
Im Rahmen dieser Promotionsarbeit wurde eine hohe Stabilität und ein stark-kooperatives Verhalten für das extrazelluläre Protein InlJ beobachtet. Diese Erkenntnisse könnten wichtige Beiträge zur Entwicklung artifizieller repeat-Proteine leisten, deren Verwendung sich stetig ausweitet. / Internalin J (InlJ) is a member of the family of bacterial cysteine-containing leucine-rich repeat (LRR) proteins. Internalins are invasion-associated surface proteins of Listeria monocytogenes. The LRR domain of InlJ consists of 15 repeating units, which are arranged in tandem. The consensus sequence consists of 21 residues. Interestingly, a leucine residue which is highly conserved among the Internalins is replaced by cysteine. This results in a continuous cysteine ladder of 12 repeats. This frequency of cysteines is remarkable for an extracellular protein of L. monocytogenes.
Stability and folding of repeat proteins are not equivalently studied considering their ubiquitous distribution in nature. Their modular structure results in simple topology and is dominated by short-range interactions. These characteristic features of repeat proteins facilitate the separation and identification of stabilizing interactions, making repeat proteins to ideal model systems for folding studies.
In this work the folding and unfolding of InlJ has been extensively characterized, shedding light on the relevance of the cysteines. Two tryptophans located in the N- and C-terminus allowed monitoring the folding state of the entire protein via fluorescence. Thermodynamic stability was therefore derived by guanidinium chloride induced equilibrium experiments. Furthermore, the chemically induced unfolding and folding reactions were characterized with respect to their kinetics. Interrupted refolding experiments were essential for tracking the productive folding reaction of InlJ. Analysis of the kinetic and equilibrium data leads to the conclusion that the results are compatible with a two-state model. The study presented here reveals high stability of the protein InlJ in conjunction with high cooperativity. Kinetic data disclosed the origin of high cooperativity in the folding reaction; with a Tanford value of about 0.93. This high value implicates that the major change of the accessible surface area occurs before the transition state is formed.
Mutational studies provided more detailed structural information about the transition state. 12 of 14 cysteine residues were mutated to alanine for this purpose. The cysteines in repeats 1 to 11 stack over each other and form a ladder of reduced cysteines. The substitution of one of these cysteines has an average destabilizing effect of 4.8 kJ/mol. The deceleration of the folding reaction by the substitution shows that repeats 5 to 11 are already fully structured in the transition state, pointing to a central nucleus in the folding of the LRR-protein InlJ.
The extracellular protein InlJ reveals extreme stability and high cooperativity. The insights into the folding of this LRR motif could facilitate the design of further artificial repeat proteins.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6960 |
Date | January 2013 |
Creators | Baumgart, Natalie |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie |
Source Sets | Potsdam University |
Language | German |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0021 seconds