• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Folding and aggregation of amyloid peptides

Kittner, Madeleine January 2011 (has links)
Aggregation of the Amyloid β (Aβ) peptide to amyloid fibrils is associated with the outbreak of Alzheimer’s disease. Early aggregation intermediates in form of soluble oligomers are of special interest as they are believed to be the major toxic components in the process. These oligomers are of disordered and transient nature. Therefore, their detailed molecular structure is difficult to access experimentally and often remains unknown. In the present work extensive, fully atomistic replica exchange molecular dynamics simulations were performed to study the preaggregated, monomer states and early aggregation intermediates (dimers, trimers) of Aβ(25-35) and Aβ(10-35)-NH2 in aqueous solution. The folding and aggregation of Aβ(25-35) were studied at neutral pH and 293 K. Aβ(25-35) monomers mainly adopt β-hairpin conformations characterized by a β-turn formed by residues G29 and A30, and a β-sheet between residues N27–K28 and I31–I32 in equilibrium with coiled conformations. The β-hairpin conformations served as initial configurations to model spontaneous aggregation of Aβ(25-35). As expected, within the Aβ(25-35) dimer and trimer ensembles many different poorly populated conformations appear. Nevertheless, we were able to distinguish between disordered and fibril-like oligomers. Whereas disordered oligomers are rather compact with few intermolecular hydrogen bonds (HBs), fibril-like oligomers are characterized by the formation of large intermolecular β-sheets. In most of the fibril-like dimers and trimers individual peptides are fully extended forming in- or out-of-register antiparallel β-sheets. A small amount of fibril-like trimers contained V-shaped peptides forming parallel β-sheets. The dimensions of extended and V-shaped oligomers correspond well to the diameters of two distinct morphologies found for Aβ(25-35) fibrils. The transition from disordered to fibril-like Aβ(25-35) dimers is unfavorable but driven by energy. The lower energy of fibril-like dimers arises from favorable intermolecular HBs and other electrostatic interactions which compete with a loss in entropy. Approximately 25 % of the entropic cost correspond to configurational entropy. The rest relates to solvent entropy, presumably caused by hydrophobic and electrostatic effects. In contrast to the transition towards fibril-like dimers the first step of aggregation is driven by entropy. Here, we compared structural and thermodynamic properties of the individual monomer, dimer and trimer ensembles to gain qualitative information about the aggregation process. The β-hairpin conformation observed for monomers is successively dissolved in dimer and trimer ensembles while instead intermolecular β-sheets are formed. As expected upon aggregation the configurational entropy decreases. Additionally, the solvent accessible surface area (SASA), especially the hydrophobic SASA, decreases yielding a favorable solvation free energy which overcompensates the loss in configurational entropy. In summary, the hydrophobic effect, possibly combined with electrostatic effects, yields an increase in solvent entropy which is believed to be one major driving force towards aggregation. Spontaneous folding of the Aβ(10-35)-NH2 monomer was modeled using two force fields, GROMOS96 43a1 and OPLS/AA, and compared to primary NMR data collected at pH 5.6 and 283 K taken from the literature. Unexpectedly, the two force fields yielded significantly different main conformations. Comparison between experimental and calculated nuclear Overhauser effect (NOE) distances is not sufficient to distinguish between the different force fields. Additionally, the comparison with scalar coupling constants suggest that the chosen protonation in both simulations corresponds to a pH lower than in the experiment. Based on this analysis we were unable to determine which force field yields a better description of this system. Dimerization of Aβ(10-35)-NH2 was studied at neutral pH and 300 K. Dimer conformations arrange in many distinct, poorly populated and rather complex alignments or interlocking patterns which are rather stabilized by side chain interactions than by specific intermolecular hydrogen bonds. Similar to Aβ(25-35) dimers, transition towards β-sheet-rich, fibril-like Aβ(10-35) dimers is driven by energy competing with a loss in entropy. Here, transition is mediated by favorable peptide-solvent and solvent-solvent interactions mainly arising from electrostatic interactions. / Die Aggregation des Amyloid β (Aβ) Peptids zu Amyloidfibrillen wird mit dem Ausbruch der Alzheimer Krankheit in Verbindung gebracht. Die toxische Wirkung auf Zellen wird vor allem den zeitigen Intermediaten in Form von löslichen Oligomeren zugeschrieben. Aufgrund deren ungeordneter und flüchtiger Natur kann die molekulare Struktur solcher zeitigen Oligomere oft experimentell nicht aufgelöst werden. In der vorliegenden Arbeit wurden aufwendige atomistische Replica-Exchange-Molekulardynamik-Simulationen durchgeführt, um die molekulare Struktur von Monomeren und Oligomeren der Fragmente Aβ(25-35) und Aβ(10-35)-NH2 in Wasser zu untersuchen. Die Faltung und Aggregation von Aβ(25-35) wurde bei neutralem pH und 293 K untersucht. Monomere dieses Fragments bilden hauptsächlich β-Haarnadelkonformationen im Gleichgewicht mit Knäulstrukturen. Innerhalb der β-Haarnadelkonformationen bilden die Residuen G29 und A30 einen β-turn, während N27–K28 and I31–I32 ein β-Faltblatt bilden. Diese β-Haarnadelkonformationen bildeten den Ausgangspunkt zur Modellierung spontaner Aggregation. Wie zu erwarten, bilden sich eine Vielzahl verschiedener, gering besetzter Dimer- und Trimerkonformationen. Mit Hilfe einer gröberen Einteilung können diese in ungeordnete und fibrillähnliche Oligomere unterteilt werden. Ungeordnete Oligomere bilden kompakte Strukturen, die nur durch wenige intermolekulare Wasserstoffbrückenbindungen (HBB) stabilisiert sind. Typisch für fibrillähnliche Oligomere ist hingegen die Ausbildung großer intermolekularer β-Faltblätter. In vielen dieser Oligomere finden wir antiparallele, in- oder out-of-register β-Faltblätter gebildet durch vollständig ausgestreckte Peptide. Ein kleiner Teil der fibrillähnlichen Trimere bildet parallele, V-förmige β-Faltblätter. Die Ausdehnungen ausgestreckter und V-förmiger Oligomere entspricht in etwa den Durchmessern von zwei verschiedenen, experimentell gefundenen Fibrillmorphologien für Aβ(25-35). Die Umwandlung von ungeordneten zu fibrillähnlichen Aβ(25-35) Dimeren ist energetisch begünstigt, läuft aber nicht freiwillig ab. Fibrillähnliche Dimere haben eine geringere Energie aufgrund günstiger Peptidwechselwirkungen (HBB, Salzbrücken), welche durch den Verlust an Entropie kompensiert wird. Etwa 25 % entsprechen dem Verlust an Konfigurationsentropie. Der restliche Anteil wird einem Verlust an Lösungsmittelentropie aufgrund von hydrophoben und elektrostatischen Effekten zugesprochen. Im Gegensatz zur Umwandlung in fibrillähnliche Dimere, ist die Assoziation von Monomeren oder Oligomeren entropisch begünstigt. Beim Vergleich thermodynamischer Eigenschaften der Monomer-, Dimer- und Trimersysteme zeigt sich im Verlauf der Aggregation, wie erwartet, eine Abnahme der Konfigurationsentropie. Zusätzlich nimmt die dem Lösungsmittel zugängliche Oberfläche (SASA), insbesondere die hydrophobe SASA, ab. In Verbindung damit beobachten wir eine Abnahme der freien Solvatisierungsenergie, welche den Verlust an Konfigurationsentropie kompensiert. Mit anderen Worten, der hydrophobe Effekt in Kombination mit elektrostatischen Wechselwirkungen führt zu einem Ansteigen der Lösungsmittelentropie und begünstigt damit die Aggegation. Die spontane Faltung des Aβ(10-35)-NH2 Monomers wurde für zwei verschiedene Proteinkraftfelder, GROMOS96 43a1 und OPLS/AA, untersucht und mit primären NMR-Daten aus der Literatur, gemessen bei pH 5.6 und 283 K, verglichen. Beide Kraftfelder generieren unterschiedliche Hauptkonformationen. Der Vergleich zwischen experimentellen und berechneten Kern-Overhauser-Effekt (NOE) Abständen ist nicht ausreichend, um zwischen beiden Kraftfeldern zu unterscheiden. Der Vergleich mit Kopplungskonstanten aus Experiment und Simulation zeigt, dass beide Simulationen einem pH-Wert geringer als 5.6 ensprechen. Basierend auf den bisherigen Ergebnissen können wir nicht entscheiden, welches Kraftfeld eine bessere Beschreibung für dieses System liefert. Die Dimerisierung von Aβ(10-35)-NH2 wurde bei neutralem pH und 300 K untersucht. Wir finden eine Vielzahl verschiedener, gering besetzter Dimerstrukturen, welche eher durch Seitenkettenkontakte als durch spezifische HBB stabilisiert sind. Wie bei den Aβ(25-35) Dimeren, ist die Umwandlung zu β-Faltblattreichen, fibrillähnlichen Aβ(10-35) Dimeren energetisch begünstigt, konkurriert aber mit einem Entropieverlust. Die Umwandlung wird in diesem Fall durch elektrostatische Wechselwirkungen zwischen Peptid und Lösungsmittel und innerhalb des Lösungsmittels bestimmt.
2

Das "Leucine-Rich Repeat" im Invasionsprotein Internalin B : Stabilität und Faltung eines Solenoidproteins / The leucine-rich repeat from internalin B : stability and folding of a solenoid protein

Freiberg, Alexander January 2004 (has links)
<p>Für das Verständnis der Strukturbildung bei Proteinen ist es wichtig, allgemein geltende Prinzipien der Stabilität und Faltung zu verstehen. Bisher wurde viel Arbeit in die Erörterung von Gesetzmäßigkeiten zu den Faltungseigenschaften von globulären Proteinen investiert. Die große Proteinklasse der solenoiden Proteine, zu denen z. B. Leucine-Rich Repeat- (LRR-) oder Ankyrin-Proteine gehören, wurde dahingegen noch wenig untersucht. Die Proteine dieser Klasse sind durch einen stapelförmigen Aufbau von sich wiederholenden typischen Sequenzeinheiten gekennzeichnet, was in der Ausbildung einer elongierten Tertiärstruktur resultiert. In der vorliegenden Arbeit sollte versucht werden, die Stabilität und Faltung eines LRR-Proteins mittels verschiedener biophysikalischer Methoden zu charakterisieren. Als Untersuchungsobjekt diente die für die Infektion ausreichende zentrale LRR-Domäne des Invasionsproteins Internalin B (InlB<sub>241</sub>) des Bakteriums <i>Listeria monocytogenes</i>. Des weiteren sollten die Integrität und die Stabilitäts- und Faltungseigenschaften der sogenannten Internalin-Domäne (InlB<sub>321</sub>) untersucht werden. Hierbei handelt es sich um die bei allen Mitgliedern der Internalinfamilie vorkommende Domäne, welche aus einer direkten Fusion des C-terminalen Endes der LRR-Domäne mit einer Immunglobulin (Ig)-ähnlichen Domäne besteht.</p> <p>Von beiden Konstrukten konnte eine vollständige thermodynamische Charakterisierung, mit Hilfe von chemisch- bzw. thermisch-induzierten Faltungs- und Entfaltungsübergängen durchgeführt werden. Sowohl InlB<sub>241</sub> als auch InlB<sub>321</sub> zeigen einen reversiblen und kooperativen Verlauf der chemisch-induzierten Gleichgewichtsübergänge, was die Anwendung eines Zweizustandsmodells zur Beschreibung der Daten erlaubte. Die zusätzliche Ig-ähnliche Domäne im InlB<sub>321</sub> resultierte im Vergleich zum InlB<sub>241</sub> in einer Erhöhung der freien Enthalpie der Entfaltung (8.8 kcal/mol im Vergleich zu 4.7 kcal/mol). Diese Stabilitätszunahme äußerte sich sowohl in einer Verschiebung des Übergangsmittelpunktes zu höheren Guanidiniumchlorid-Konzentrationen als auch in einer Erhöhung der Kooperativität des Gleichgewichtsübergangs (9.7 kcal/mol/M im Vergleich zu 7.1 kcal/mol/M). Diese Beobachtungen zeigen dass die einzelnen Sequenzeinheiten der LRR-Domäne nicht unabhängig voneinander falten und dass die Ig-ähnliche Domäne, obwohl sie nicht direkt mit dem Wirtszellrezeptor während der Invasion interagiert, eine kritische Rolle für die <i style='mso-bidi-font-style:normal'>in&nbsp;vivo</i> Stabilität des Internalin B spielt. Des weiteren spiegelt die Kooperativität des Übergangs die Integrität der Internalin-Domäne wieder und deutet darauf hin, dass bei beiden Proteinen keine Intermediate vorliegen.</p> <p>Kinetische Messungen über Tryptophanfluoreszenz und Fern-UV<span style='color:red'> </span>Circulardichroismus deuteten auf die Existenz eines relativ stabilen Intermediates auf dem Faltungsweg der LRR-Domäne hin. Faltungskinetiken aus einem in pH&nbsp;2 denaturierten Zustand zeigten ein reversibles Verhalten und verliefen über ein Intermediat. Eine Erhöhung der Salzkonzentration des sauer-denaturierten Proteins führte zu einer Kompaktierung der entfalteten Struktur und resultierte im Übergang zu einem alternativ gefalteten Zustand. Bei der Internalin-Domäne deuteten kinetische Messungen des Fluoreszenz- und Fern-UV Circulardichroismus-Signals während der Entfaltung möglicherweise auf die Präsenz von zwei Prozessen hin. Der erste langsame Entfaltungsprozess kurz nach dem Übergangsmittelpunkt zeigte eine starke Abhängigkeit von der Temperatur, während der zweite schnellere Prozess der Entfaltung stärker von der Guanidiniumchlorid-Konzentration abhing. Renaturierungskinetiken zeigten das Auftreten von mindestens einem Faltungsintermediat. Kinetische Daten aus Doppelsprungexperimenten lieferten für die Erklärung der langsamen Faltungsphase zunächst keinen Hinweis auf dass Vorliegen einer Prolinisomerisierungsreaktion. Die vollständige Amplitude während der Renaturierung konnte nicht detektiert werden, weswegen von einer zweiten schnellen Phase im Submillisekundenbereich ausgegangen werden kann.</p> <p>Die Ergebnisse der Faltungskinetiken zeigen, dass die InlB-Konstrukte als Modelle für die Untersuchung der Faltung von Solenoidproteinen verwendet werden können.<span lang=EN-GB style='mso-ansi-language: EN-GB'><o:p></o:p></span></p> / <p class=MsoBodyText><span lang=EN-GB style='mso-ansi-language:EN-GB'>To understand the processes of protein structure formation, it is necessary to investigate protein stability and protein folding kinetics. The focus of many folding studies has been directed at small, globular proteins. The larger class of solenoid proteins, including leucine-rich repeat (LRR) and ankyrin proteins, has not been extensively investigated. These proteins contain tandem repeat motifs, and their tertiary structure consists of a regular linear array of modules that stack to form non-globular elongated or supercoiled structures. In the present work, the folding and stability of the central LRR domain of the invasion protein internalin B (InlB<sub>241</sub>) from the bacterium <i>Listeria monocytogenes</i> was characterized using different biophysical techniques. In addition, the integrity, stability and folding behavior of the so-called internalin-domain (InlB<sub>321</sub>) was investigated. In this single domain, which is found in all members of the internalin-family, an immunoglobulin (Ig)-like domain is directly fused to the C-terminal end of the LRR domain.<span style='color:red'><o:p></o:p></span></span></p> <p class=MsoBodyText><span lang=EN-GB style='mso-ansi-language:EN-GB'>A complete thermodynamic characterization of the stability of both constructs was performed, using chemical- and temperature-induced folding and unfolding transitions. The reversible and cooperative equilibrium transition of InlB<sub>241</sub> and InlB<sub>321</sub> allowed the use of a two-state model for the description of the data points. The additional Ig-like domain present in InlB<sub>321</sub> resulted in an increase of the unfolding free energy (8.8 kcal/mol compared to 4.7 kcal/mol). This resulted both, from a shift of the transition midpoint to higher denaturant concentration, and from an increase in the <i>m</i>-value, the denaturant dependence of the unfolding free energy (9.7 kcal/mol/M compared to 7.1 kcal/mol/M). These observations suggest that the unravelling of the individual structural repeats in the LRR region is a cooperative process and that the tight fusion with the Ig-like domain leads to a dramatically increased stability <i>in vivo</i> without interfering with the functionality of the protein. In addition, the cooperativity of the equilibrium transition reflects the integrity of the internalin-domain, and suggests that both InlB fragments unfold without significantly populated equilibrium intermediates.<o:p></o:p></span></p> <p class=MsoBodyText><span lang=EN-GB style='mso-ansi-language:EN-GB'>Kinetic measurements with tryptophan fluorescence and far-UV circular dichroism are indicative for the existence of a relative stable intermediate on the folding pathway of the LRR domain. Refolding kinetics from an acid-denatured state showed a reversible behavior and passes off an intermediate. An increase in the salt concentration of the acid-denatured protein results in a transition of the unfolded structure to a compact and alternatively folded state. Unfolding kinetics of the internalin-domain measured by fluorescence and far-UV circular dichroism are indicative for the possible presence of two processes. The first slow unfolding process after the transition midpoint showed a strong dependence on temperature, whereas the second and faster unfolding process showed a stronger dependence on the denaturant concentration. Renaturation kinetics indicated the existence of at least one folding intermediate. Preliminary double-mixing experiments revealed no evidence for a rate-limiting proline isomerization reaction. It was not possible to detect the complete amplitude of the renaturation reaction, suggesting existence of a second faster phase occuring in the submillisecond range.<o:p></o:p></span></p> <p class=MsoBodyText><span lang=EN-GB style='mso-ansi-language:EN-GB'>The results on folding kinetics prove the InlB constructs to be suitable models for the investigation of solenoid protein folding by techniques of high structural resolution.<o:p></o:p></span></p>
3

Bedeutung eines hydrophoben Seitenkettenstapels für Stabilität, Faltung und Struktur des P22 Tailspikeproteins / Importance of a hydrophobic side chain stack for stability, folding and structure of the P22 tailspike protein

Becker, Marion January 2009 (has links)
Das homotrimere Tailspikeadhäsin des Bakteriophagen P22 ist ein etabliertes Modellsystem, dessen Faltung, Assemblierung und Stabilität in vivo und in vitro umfassend charakterisiert ist. Das zentrale Strukturmotiv des Proteins ist eine parallele beta-Helix mit 13 Windungen, die von einer N‑terminalen Kapsidbindedomäne und einer C‑terminalen Trimerisierungsdomäne flankiert wird. Jede Windung beinhaltet drei kurze beta-Stränge, die durch turns und loops unterschiedlicher Länge verbunden sind. Durch den sich strukturell wiederholenden, spulenförmigen Aufbau formen beta-Stränge benachbarter Windungen elongierte beta-Faltblätter. Das Lumen der beta-Helix beinhaltet größtenteils hydrophobe Seitenketten, welche linear und sehr regelmäßig entlang der Längsachse gestapelt sind. Eine hoch repetitive Struktur, ausgedehnte beta-Faltblätter und die regelmäßige Anordnung von ähnlichen oder identischen Seitenketten entlang der beta-Faltblattachse sind ebenfalls typische Kennzeichen von Amyloidfibrillen, die bei Proteinfaltungskrankheiten wie Alzheimer, der Creutzfeld-Jakob-Krankheit, Chorea Huntington und Typ-II-Diabetes gebildet werden. Es wird vermutet, dass die hohe Stabilität des Tailspikeproteins und auch die der Amyloidfibrille durch Seitenkettenstapelung, einem geordneten Netzwerk von Wasserstoffbrückenbindungen und den rigiden, oligomeren Verbund bedingt ist. Um den Einfluss der Seitenkettenstapelung auf die Stabilität, Faltung und Struktur des P22 Tailspikeproteins zu untersuchen, wurden sieben Valine in einem im Lumen der beta-Helix begrabenen Seitenkettenstapel gegen das kleinere und weniger hydrophobe Alanin und das voluminösere Leucin substituiert. Der Einfluss der Mutationen wurde anhand zweier Tailspikevarianten, dem trimeren, N‑terminal verkürzten TSPdeltaN‑Konstrukt und der monomeren, isolierten beta-Helix Domäne analysiert. Generell wurde in den Experimenten deutlich, dass Mutationen zu Alanin stärkere Effekte auslösen als Mutationen zu Leucin. Die dichte und hydrophobe Packung im Kern der beta-Helix bildet somit die Basis für Stabilität und Faltung des Proteins. Anhand hoch aufgelöster Kristallstrukturen jeweils zweier Alanin‑ und Leucin‑Mutanten konnte verdeutlicht werden, dass das Strukturmotiv der parallelen beta-Helix stark formbar ist und mutationsbedingte Änderungen des Seitenkettenvolumens durch kleine und lokale Verschiebung der Haupt‑ und Seitenketten ausgeglichen werden, sodass mögliche Kavitäten gefüllt und sterische Spannung abgebaut werden können. Viele Mutanten zeigten in vivo und in vitro einen temperatursensitiven Faltungsphänotyp (temperature sensitive for folding, tsf), d.h. bei Temperaturerhöhung waren die Ausbeuten des N‑terminal verkürzten Trimers im Vergleich zum Wildtyp deutlich verringert. Weiterführende Experimente zeigten, dass der tsf‑Phänotyp durch die Beeinflussung unterschiedlicher Stadien des Reifungsprozesses oder auch durch die Verminderung der kinetischen Stabilität des nativen Trimers ausgelöst wurde. Durch Untersuchungen am vollständigen und am N‑terminal verkürzten Wildtypprotein wurde gezeigt, dass die Entfaltungsreaktion des Tailspiketrimers komplex ist. Die Verläufe der Kinetiken folgen zwar einem apparenten Zweizustandsverhalten, jedoch sind bei Darstellung der Entfaltungsäste im Chevronplot die Abhängigkeiten der Geschwindigkeitskonstanten vom Denaturierungsmittel nicht linear, sondern in unterschiedliche Richtungen gewölbt. Dieses Verhalten könnte durch ein hoch energetisches Entfaltungsintermediat, einen breiten Übergangsbereich oder parallele Entfaltungswege hervorgerufen sein. Mit Hilfe der monomeren, isolierten beta-Helix Domäne, bei der die N‑terminale Capsidbindedomäne und die C‑terminale Trimerisierungsdomäne deletiert sind und welche als unabhängige Faltungseinheit fungiert, wurde gezeigt, dass alle Mutanten im Harnstoff‑induzierten Gleichgewicht analog zum Wildtypprotein einem Zweizustandsverhalten mit vergleichbaren Kooperativitäten folgen. Die konformationellen Stabilitäten von in der beta-Helix zentral gelegenen Alanin‑ und Leucin‑Mutanten sind stark vermindert, während Mutationen in äußeren Bereichen der Domäne keinen Einfluss auf die Stabilität der beta-Helix haben. Bei Verlängerung der Inkubationszeiten der Gleichgewichtsexperimente konnte die langsame Bildung von Aggregaten im Übergangsbereich der destabilisierten Mutanten detektiert werden. Die in der Arbeit erlangten Erkenntnisse lassen vermuten, dass die isolierte beta-Helix einem für die Reifung des Tailspikeproteins entscheidenden thermolabilen Faltungsintermediat auf Monomerebene sehr ähnlich ist. Im Intermediat ist ein zentraler Kern, der die Windungen 4 bis 7 und die „Rückenflosse“ beinhaltet, stabilitätsbestimmend. Dieser Kern könnte als Faltungsnukleus dienen, an den sich sequenziell weitere Helixwindungen anlagern und im Zuge der „Monomerreifung“ kompaktieren. / The homotrimeric tailspike adhesin of bacteriophage P22 is a widely used model system for studying different aspects of multi-domain protein folding, assembly and stability, both in vivo and in vitro. The central domain of the tailspike protein is a 13-turn right-handed parallel beta-helix, flanked by an N-terminal capsid-binding domain and a C-terminal trimerization domain. In the beta-helix motif the polypeptide backbone winds up to form a right-handed helix, with each coil consisting of three short beta-strands connected by turns and loops of varying lengths. Due to this repetitive and solenoidal structure, beta-strands of adjacent coils participate in building up three elongated beta-sheets. The internal lumen of the beta-helix is tightly packed and contains mostly hydrophobic side-chains, which are stacked along the helical axis in a linear and very regular manner. A highly repetitive structure, elongated beta-sheets and stacking of similar or identical side chains along the beta-sheet axis are also typical characteristics of amyloid fibrils, which are associated with protein folding diseases such as Alzheimer’s disease, Creutzfeldt-Jacob disease, Huntington’s disease and type II diabetes. It is assumed that the high stability of both, the tailspike protein and amyloid fibrils, is determined by side chain stacking, a well‑ordered network of H-bonds and the rigid, oligomeric state. To systematically investigate the influence of side chain stacking for stability, folding and structure of the P22 tailspike protein, a hydrophobic stack located in the lumen of the beta-helix domain was subjected to site-directed mutagenesis. Each of seven valine residues, distributed over the whole length of the beta-helix domain, was substituted by the smaller and less hydrophobic alanine and the bulkier leucine. The influence of these substitutions was investigated with the help of two tailspike protein constructs, namely the N-terminally shortened TSPdeltaN construct and the isolated, monomeric BHX construct. In general, almost all experiments showed that alanine mutations cause a stronger effect than leucine mutations, which demonstrates that the tight and hydrophobic packing in the lumen of the beta-helix domain is the basis for stability and folding of the tailspike protein. High-resolution crystal structures of two alanine and two leucine mutants revealed that the parallel beta-helix motif shows considerable plasticity. Small and local adjustments of side chains and the polypeptide backbone compensate for changes induced by the mutations, herewith potential cavities are filled and steric strain is released. Compared to the wild type, many mutations lead to a temperature sensitive for folding (tsf) phenotype in vivo and in vitro, i.e. mutations reduce folding yields of TSPdeltaN at high temperatures, but had little effect at low temperatures. Our experiments have elucidated that the tsf phenotype was caused either by an impact on different stages of the maturation process or by a reduction of the kinetic stability of the native trimer. Using TSPdeltaN and the complete wild type protein, it was shown that the tailspike trimer unfolds in a complex manner. Although unfolding kinetics exhibit a two-state behaviour, analysis of the apparent rate constants of unfolding in a Chevron plot revealed their non-linear denaturant-dependence. Typically, the natural logarithm of the apparent rate constants depend linearly on the denaturant concentration. However, in case of TSPdeltaN and the complete wild type protein, unfolding branches of the Chevron plot are curved. Such a behaviour could arise from a high energy intermediate on the unfolding pathway, a broad activation barrier or parallel unfolding pathways. The monomeric BHX construct lacks both the N-terminal and C-terminal domain. It folds into a conformation very similar to that of the -helix domain in the tailspike trimer and acts as an independent folding unit. Unfolding and refolding equilibrium transitions of mutant and wild type BHX constructs are reversible and follow a two-state behaviour with comparable cooperativities. However, conformational stabilities of alanine and leucine mutations located in the central part of the beta-helix domain are highly reduced, whereas mutations at the ends of the domain show a wild type-like stability. Furthermore, these destabilizing mutations tend to form aggregates around the transition midpoint when equilibrium experiments were incubated for longer time periods. Taken together, the results suggest that the structure of the isolated beta-helix seems to be similar to an essential, monomeric intermediate during tailspike folding. In this intermediate, a central core including coils 4 to 7 and the dorsal fin determines the stability of the whole folding unit. This core may act as a nucleus on which beta-helix coils can associate in a sequential manner and compact during maturation of the monomer.
4

Die Strukturbildung der beta-Helix in der Pektatlyase Pel-15 / The structure formation of the beta-helix in the pectate lyase Pel-15

Fiedler, Christian January 2010 (has links)
Pektatlyase (Pel-15) aus dem alkalophilen Bodenbakterium Bacillus spec. KSM-P15 ist mit 197 Aminosäuren eines der kleinsten, bekannten β-3-Solenoidproteine. Sie spaltet Polygalakturonsäurederivate in einem Ca2+-abhängigen β-Eliminierungsprozess. Wie bei allen Proteinen dieser Enzymfamilie ist auch die Polypeptidkette von Pel-15 zu einer einsträngigen, rechtsgängigen, parallelen β-Helix aufgewunden. In diesem Strukturmotiv enthält jede Windung drei β-Stränge, die jeweils durch flexible Schleifenbereiche miteinander verbunden sind. Insgesamt acht Windungen stapeln sich in Pel-15 übereinander und bilden entlang der Helixachse flächige, parallele β-Faltblätter aus. Im Bereich dieser β-Faltblätter existiert ein ausgedehntes Netzwerk von Wasserstoffbrückenbindungen, durch das der hydrophobe Kern, der sich im Inneren der β-Helix befindet, vom umgebenden Lösungsmittel abgeschirmt wird. Besondere Abschlussstrukturen an beiden Enden der β-Helix, wie sie typischerweise bei anderen Ver-tretern dieser Strukturklasse ausgeprägt werden, sind in Pel-15 nicht zu beobachten. Stattdessen sind die terminalen Bereiche der β-Helix über Salzbrücken und hydrophobe Seitenkettenkontakte stabilisiert. In der vorliegenden Dissertation wurde die Pektatlyase Pel-15 hinsichtlich ihres Faltungsgleichgewichtes, ihrer enzymatischen Aktivität und der Kinetik ihrer Strukturbildung charakterisiert. In eine evolutionär konservierte Helixwindung wurden destabilisierende Mutationen eingeführt, und deren Auswirkungen mittels spektroskopischer Methoden analysiert. Die Ergebnisse zeigen, dass Pel-15 in Gegenwart des Denaturierungsmittels Guanidiniumhydrochlorid einen hyperfluoreszenten Gleichgewichtsustand (HF) populiert, der nach Messungen von Faltungs- und Entfaltungskinetiken ein konformationelles Ensemble aus den Zuständen HFslow und HFfast darstellt. Diese HF-Zustände sind durch eine hohe Aktivierungsbarriere voneinander getrennt. In Rückfaltungsexperimenten populieren nur etwa 80 % der faltenden Moleküle den Zwischenzustand HFslow, der mit einer Zeitkonstante von ca. 100 s zu HFfast weiterreagiert. Die Denaturierungsmittelabhängigkeit dieser Reaktion ist sehr gering, was eine trans-/cis-Prolylisomerisierung als geschwindigkeitslimitierenden Schritt nahelegt. Die Existenz eines cis-Peptides in der nativen Struktur macht es erforderlich, den denaturierten Zustand als ein Ensemble kinetisch separierter Konformationen, kurz: DSE, zu betrachten, das durch die Spezies Ufast und Uslow populiert wird. Nach dem in dieser Arbeit aufgestellten „Minimalmodell der Pel-15 Faltung“ stehen die HF-Spezies (HFslow, HFfast) mit den Konformationen des DSE in einem thermodynamischen Kreisprozess. Das Modell positioniert HFfast und die native Konformation N auf die „native Seite“ der Aktivierungsbarriere und trägt damit der Tatsache Rechnung, dass die Gleichgewichtseinstellung zwischen diesen Spezies zu schnell ist, um mit manuellen Techniken erfasst zu werden. Die hochaffine Bindung von Ca2+ (Kd = 10 μM) verschiebt sich das Faltungsgleichgewicht bereits in Gegenwart von 1 mM CaCl2 soweit auf die Seite des nativen Zustandes, das HFfast nicht länger nachweisbar ist. Entgegen anfänglicher Vermutungen kommt einer lokalen, evolutionär konservierten Disulfidbrücke im Zentrum der β-Helix eine wichtige Stabilisierungsfunktion zu. Die Disulfidbrücke befindet sich in einem kurzen Schleifenbereich der β-Helix nahe dem aktiven Zentrum. Obwohl ihr Austausch gegen die Reste Val und Ala die freie Stabilisierungsenthalpie des Proteins um ca. 10 kJ/mol reduziert, lässt die Struktur im Bereich der Mutationsstelle keine gravierende Veränderung erkennen. Auch die katalytisch relevante Ca2+-Bindungsaffinität bleibt unbeeinflusst; dennoch zeigen Enzymaktivitätstests für VA-Mutanten eine Reduktion der enzymatischen Aktivität um fast 50 % an. Die evolutionär konservierte Helixwindung im Allgemeinen und die in ihr enthaltene Disulfidbrücke im Besonderen müssen nach den vorliegenden Ergebnissen also eine zentrale Funktion sowohl für die Struktur des katalytischen Zentrums als auch für die Strukturbildung der β-Helix während der Faltungsreaktion besitzen. Die Ergebnisse dieser Arbeit finden in mehreren Punkten Anklang an Faltungseigenschaften, die für andere β -Helixproteine beschrieben wurden. Vor allem aber prädestinieren sie Pel-15 als ein neues, β-helikales Modellprotein. Aufgrund seiner einfachen Topologie, seiner niedrigen Windungszahl und seiner hohen thermodynamischen Stabilität ist Pel-15 sehr gut geeignet, die Determinanten von Stabilität und Strukturbildung des parallelen β-Helix-Motivs in einer Auflösung zu studieren, die aufgrund der Komplexität bestehender β-helikaler Modellsysteme bislang nicht zur Verfügung stand. / Pectate lyase Pel-15 was isolated from alcaliphlic Bacillus spec. strain KSM-P15. Like all pectate lyases Pel-15 binds and subsequently cleaves polygalacturonic acid, the main pectic compound in plant cell walls and middle lamellae, in a Ca2+ dependent beta-elimination reaction. With 197 amino acids and a molecular mass of only 21 kDa the protein is one of the smallest right-handed parallel beta-helical proteins known today. Polypeptide chains that are classified into this structural family adopt super-helical folds in which each “solenoid stack” consists of three beta-structured regions that are connected by flexible turn segments. Along its longitudinal axis the right-handed parallel beta-helix thus comprises three elongated parallel beta-sheets that are stabilized by an extensive network of hydrogen bonds wrapping around the densely packed hydrophobic core. Together with the shield-like arrangement of hydrogen bonds this hydrophobic core is considered as the main contributor to an exceptionally high stability that is a common feature of all beta-helical proteins. In contrast to most right-handed parallel beta-helices, Pel-15 is devoid of any terminal capping domains and laterally associated secondary structure. Therefore, this protein is considered to be a promising model protein of a pure beta-helix which will help to understand the determinants of both parallel beta-sheet formation and stability. In the dissertation at hand optical spectroscopic methods were used to assess the enzymatic activity, the folding/unfolding equilibrium and the kinetic mechanism of structure formation in neutral buffered solutions. Results indicate that Pel-15 populates a hyper-fluorescent equilibrium intermediate (HF) that is effectively populated in presence of the denaturing agent guanidinium hydrochloride (GdmCl). According to kinetic folding and unfolding experiments HF is not only an essential on-pathway intermediate but has to be considered as a conformational ensemble in which several hyperfluorescent states are in thermodynamic equilibrium with each other. According to their existence in kinetic folding trajectories these different HF-species were termed HFslow and HFfast. The activation energy between both states is remarkably high leading to a time constant of about 100 seconds for the reaction HFslow ⇆ HFfast. Since native Pel-15 contains an energetically disfavoured cis-prolyl peptide between A59 and P60 it is proposed that HFslow and HFfast differ in their prolyl peptide conformations. Two main results emerge from this dissertation. First, an extensive study of the Pel-15 folding- and unfolding behaviour facilitated the proposal of a “minimal folding model”. According to this model the HF-states and the according denatured species Uslow and Ufast are aligned into a thermodynamic circle. This implies that unfolded polypeptide chains reach the HF-ensemble via parallel folding trajectories. Since the native conformation N together with HFfast are on the same side of the activation barrier, it is the reaction HFslow ⇆ HFfast that is the rate limiting step in the folding reaction of Pel-15. Second, the importance of an evolutionarily conserved disulfide bond in the central region of Pel-15 was tested by site directed mutagenesis and subsequent spectroscopic characterization. The exchange of the disulfide against a hydrophobic pair of alanine and valine decreases the folding free energy by about 10 kJ/mol. Although this value is unexpectedly high, structural perturbations around both mutational positions are small as was deduced from X-Ray crystallography. Interestingly, the stability decrease is accompanied by a major loss of enzymatic activity while the Ca2+ binding affinity is not significantly affected. It is therefore concluded that the allosterically relevant disulfide bond stabilizes long-range interactions that stabilize several adjacent solenoid turns near the N-terminus of the protein. Indeed, planar stacking interactions are perturbed and flexibility of N-terminal loops is increased once the disulfide bond is removed. This dissertation establishes Pel-15 as a novel beta-helical model protein and – even more important – smoothes the way for a generally accepted perspective on the formation and stability of parallel beta-sheet proteins.
5

Faltungseigenschaften des extrazellulären Proteins Internalin J und seine Cysteinleiter / Folding of the extracellular protein Internalin J and the cysteine ladder

Baumgart, Natalie January 2013 (has links)
Internalin J (InlJ) gehört zu der Klasse der bakteriellen, cysteinhaltigen (leucine-rich repeat) LRR Proteine. Bei den Internalinen handelt es sich um meist invasions-assoziierte Proteine der Listerien. Die LRR-Domäne von InlJ ist aus 15 regelmäßig wiederkehrenden, stark konservierten Sequenzeinheiten (repeats, 21 Aminosäuren) aufgebaut. Ein interessantes Detail dieses Internalins ist das stark konservierte Cystein innerhalb der repeats. Daraus ergibt sich eine ungewöhnliche Anordnung von 12 Cysteinen in einem Stapel. Die Häufigkeit von Cysteinen in InlJ ist für ein extrazelluläres Protein von L. monocytogenes außergewöhnlich, und die Frage nach ihrer Funktion daher umso brennender. Im Vergleich zum ubiquitären Vorkommen der sogenannten repeat-Proteine in der Natur sind Studien zu ihrer Stabilität und Faltung nicht äquivalent vertreten. Die zentrale Eigenschaft der repeat-Proteine ist ihr modularer Aufbau, der durch einfache Topologie gekennzeichnet ist und auf kurzreichenden Wechselwirkungen basiert. Diese Topologie macht repeat-Proteine zu idealen Modellproteinen, um die stabilitätsrelevanten Wechselwirkungen zu separieren und zuzuordnen. In der vorliegenden Arbeit wurde die Faltung und Entfaltung von InlJ umfassend charakterisiert und die Relevanz der Cysteine näher beleuchtet. Die spektroskopische Charakterisierung von InlJ zeigte, dass dessen Faltungszustand durch zwei Tryptophane im N- und C-Terminus fluoreszenzspektroskopisch gut zugänglich ist. Die thermodynamische Stabilität wurde mittels fluoreszenz-detektierten, Guanidiniumchlorid-induzierten Gleichgewichtsexperimenten bestimmt. Um die kinetischen Eigenschaften von InlJ zu erfassen, wurden die Faltungs- sowie die Entfaltungsreaktion spektroskopisch untersucht. Die Identifizierung der produktiven Faltungsreaktion war lediglich durch die Anwendung des reversen Doppelsprungexperiments möglich. Die Auswertung erfolgte nach dem Zweizustandsmodell, wonach die Faltung dem „Alles-oder-Nichts“ Prinzip folgt. Die Gültigkeit dieser Annahme wurde durch die kinetische Charakterisierung bestätigt. Es wurde sowohl in den Gleichgewichtsexperimenten als auch in den kinetisch erhaltenen Daten eine hohe freie Stabilisierungsenthalpie festgestellt. Die hohe Stabilität von InlJ geht mit hoher Kooperativität einher. Die kinetischen Daten zeigen zudem, dass die hohe Kooperativität hauptsächlich der Faltungsreaktion entstammt. Der Tanford-Wert von 0.93 impliziert, dass die Oberflächenänderung während der Faltung bereits zum größten Teil erfolgt ist, bevor der Übergangszustand ausgebildet wurde. Direkte strukturelle Informationen über den Übergangszustand wurden mit Hilfe von Mutationsstudien erhalten. Zu diesem Zweck wurden 12 der 14 Cysteine gegen ein Alanin ausgetauscht. Die repeats 1 bis 11 von InlJ beinhalten jeweils ein Cystein, deren Anordnung eine Leiter ergibt. Deren Substitutionen haben einen vergleichbar destabilisierenden Effekt auf InlJ von durchschnittlich 4.8 kJ/mol. Die Verlangsamung der Faltung deutet daraufhin, dass die Interaktionen der repeats 5 bis 11 im Übergangszustand bereits voll ausgebildet sind. Demnach liegt bei InlJ ein zentraler Faltungsnukleus vor. Im Rahmen dieser Promotionsarbeit wurde eine hohe Stabilität und ein stark-kooperatives Verhalten für das extrazelluläre Protein InlJ beobachtet. Diese Erkenntnisse könnten wichtige Beiträge zur Entwicklung artifizieller repeat-Proteine leisten, deren Verwendung sich stetig ausweitet. / Internalin J (InlJ) is a member of the family of bacterial cysteine-containing leucine-rich repeat (LRR) proteins. Internalins are invasion-associated surface proteins of Listeria monocytogenes. The LRR domain of InlJ consists of 15 repeating units, which are arranged in tandem. The consensus sequence consists of 21 residues. Interestingly, a leucine residue which is highly conserved among the Internalins is replaced by cysteine. This results in a continuous cysteine ladder of 12 repeats. This frequency of cysteines is remarkable for an extracellular protein of L. monocytogenes. Stability and folding of repeat proteins are not equivalently studied considering their ubiquitous distribution in nature. Their modular structure results in simple topology and is dominated by short-range interactions. These characteristic features of repeat proteins facilitate the separation and identification of stabilizing interactions, making repeat proteins to ideal model systems for folding studies. In this work the folding and unfolding of InlJ has been extensively characterized, shedding light on the relevance of the cysteines. Two tryptophans located in the N- and C-terminus allowed monitoring the folding state of the entire protein via fluorescence. Thermodynamic stability was therefore derived by guanidinium chloride induced equilibrium experiments. Furthermore, the chemically induced unfolding and folding reactions were characterized with respect to their kinetics. Interrupted refolding experiments were essential for tracking the productive folding reaction of InlJ. Analysis of the kinetic and equilibrium data leads to the conclusion that the results are compatible with a two-state model. The study presented here reveals high stability of the protein InlJ in conjunction with high cooperativity. Kinetic data disclosed the origin of high cooperativity in the folding reaction; with a Tanford value of about 0.93. This high value implicates that the major change of the accessible surface area occurs before the transition state is formed. Mutational studies provided more detailed structural information about the transition state. 12 of 14 cysteine residues were mutated to alanine for this purpose. The cysteines in repeats 1 to 11 stack over each other and form a ladder of reduced cysteines. The substitution of one of these cysteines has an average destabilizing effect of 4.8 kJ/mol. The deceleration of the folding reaction by the substitution shows that repeats 5 to 11 are already fully structured in the transition state, pointing to a central nucleus in the folding of the LRR-protein InlJ. The extracellular protein InlJ reveals extreme stability and high cooperativity. The insights into the folding of this LRR motif could facilitate the design of further artificial repeat proteins.
6

Thermodynamisches Verhalten von Erdgas, Wasserstoff und Erdgas-Wasserstoff-Mischgasen in Salzkavernen während der unterirdischen Speicherung

Keßler, Benjamin 01 February 2022 (has links)
In Deutschland wird das Thema der Energiewende mit voranschreitender Diskussion über Kohle- und Atomausstieg immer populärer und konkreter. Hierbei wird es immer wichtiger, die Erneuerbaren Energien in den Vordergrund zu rücken und diese effizienter zu nutzen. Ein zentrales Problem, welches gelöst werden muss, ist die Speicherung dieser Energie. Es muss zu jeder Zeit möglich sein den Energiebedarf zu decken, unabhängig davon, ob Wind- und Solaranlagen Strom liefern. Ein möglicher Ansatz ist, aus überschüssiger Wind- und Sonnenenergie über eine Elektrolyse Wasserstoff zu erzeugen und diesen dann in unterirdischen Strukturen wie z.B. Salzkavernen, Aquiferstrukturen oder ausgeförderte Öl- oder Gaslagerstätten zu speichern. In dieser Arbeit sollen die thermodynamischen und fluiddynamischen Strömungsvorgänge in Salzkavernen während der Umwidmung von Erdgas auf Wasserstoff untersucht und simuliert werden. Für die Umstellung eines Kavernenspeichers von Erdgas auf Wasserstoff wurden zwei Möglichkeiten identifiziert. Die erste Variante ist, das Kaverne befindliche Erdgas als Kissengas zu nutzen. Diese Variante bringt den Vorteil, dass das Kissengas als natürliche Hemmschwelle zwischen dem Kavernensumpf und Wasserstoff dient, was wiederum eine Schwefelwasserstoff – Bildung hemmt. Als zweite Umstellungsvariante könnte die Kaverne mit vollgesättigter Sole gefüllt werden, um das Erdgas vollständig fördern zu können. Anschließend kann Wasserstoff in die mit Sole gefüllte Kaverne injiziert werden. Für diese Umstellungsvariante ist es nötig, den Soleentleerungsstrang in die Bohrung einzubauen, wofür eine Workoveranlage vonnöten ist. Diese Variante bringt den Vorteil, dass eine reine Wasserstoffkaverne zur Verfügung steht und geringere Anforderungen an die Gasaufbereitung gestellt werden müssen:Inhaltsverzeichnis Abkürzungs- und Symbolverzeichnis I 1. Einleitung 1 1.1 Aufgabenstellung 3 1.2 Bedeutung von Salzkavernen für die Speicherung 4 1.3 Stand der Technik 6 1.4 Aufbau der Arbeit 7 2. Eigenschaften von Methan, Wasserstoff und Methan – Wasserstoff – Mischgasen 9 2.1 Dichte 11 2.1.1 Methan 12 2.1.2 Wasserstoff 13 2.1.3 Methan – Wasserstoff – Mischgase 15 2.2 Realgasfaktor 15 2.2.1 Methan 16 2.2.2 Wasserstoff 17 2.2.3 Methan – Wasserstoff – Mischgase 18 2.3 Dynamische Viskosität 20 2.3.1 Methan 20 2.3.2 Wasserstoff 22 2.3.3 Methan – Wasserstoff – Mischgase 25 2.4 Spezifische Wärmekapazität und Isotropenexponent 27 2.4.1 Methan 27 2.4.2 Wasserstoff 29 2.4.3 Methan – Wasserstoff – Mischgase 30 2.5 Wärmeleitfähigkeit 30 2.5.1 Methan 30 2.5.2 Wasserstoff 32 2.5.3 Methan – Wasserstoff – Mischgase 33 2.6 Joule – Thomson – Koeffizient 34 2.6.1 Methan 34 2.6.2 Wasserstoff 36 2.6.3 Methan – Wasserstoff – Mischgase 36 2.7 Löslichkeit in salzhaltigem Wasser 36 2.7.1 Methan 36 2.7.2 Wasserstoff 39 2.7.3 Methan – Wasserstoff – Mischgase 39 2.8 Gegenüberstellung der Eigenschaften zwischen Erdgas, Wasserstoff und Erdgas – Wasserstoff – Mischgasen 40 2.8.1 Dichte 40 2.8.2 Realgasfaktor 41 2.8.3 Dynamische Viskosität 42 2.8.4 Spezifische Wärmekapazität 43 2.8.5 Wärmeleitfähigkeit 44 2.8.6 Joule – Thomson – Koeffizient 45 2.9 Zusammenfassung der genauesten Stoffgleichung 46 3. Physikalische Grundlagen 48 3.1.1 Wärmetransport 49 3.1.2 Konvektion 50 3.1.3 Diffusion 50 3.1.4 Charakterisierung von Strömungen 53 4. Auswertung der Stadtgas – Erfahrungen und Entwicklung von Gas – Mischungsreferenzfällen 57 4.1 Stadtgasspeicherung 57 4.2 Gasqualität und Gasqualitätsveränderungen während der Medienumstellung von Stadtgas auf Erdgas 58 4.2.1 Theoretische Betrachtungen der Stadtgas – Erdgas – Umstellung 59 4.2.2 Monitoring Umstellung der Kaverne LT 22 61 4.2.3 Umstellung weiterer Kavernen und die Entwicklung der Gasqualität in den Jahren 1997 bis 1998 63 4.2.4 Anwendbarkeit der Ergebnisse auf die Medienumstellung mit Wasserstoff 64 5. Entwicklung eines Simulationsmodells 65 5.1 Modellentwicklung 66 5.1.1 Modellkonzeption 66 5.1.2 Geometrie 68 5.1.3 Randbedingungen 69 5.1.4 Feuchteentwicklung bei der Gasspeicherung in Salzkavernen 70 5.1.5 Vernetzung 72 5.1.6 Beschreibung und Auswahl der verfügbaren Turbulenzmodule 75 5.1.7 Mathematische Beschreibung des verwendeten Turbulenzmoduls 79 6. Simulation der Medienumstellung 83 6.1 Umstellungsstrategien 83 6.2 Simulation der Injektionsphase für unterschiedliche Randbedingungen 84 6.2.1 Untersuchung des Einflusses der Eintrittsgeschwindigkeit 84 6.2.2 Untersuchung des Einflusses des Anfangsdrucks 88 6.2.3 Untersuchung des Einflusses der Temperaturverhältnisse der Gase 91 6.3 Simulation der Ruhephase 93 6.4 Simulation der Ausspeicherphase 97 6.5 Prognose der zu erwartenden Gasqualitäten 99 7. Zusammenfassung und Ausblick 101 Literaturverzeichnis 105 Abbildungsverzeichnis 111 Tabellenverzeichnis 115 Anlagenverzeichnis 116
7

Stabilitätsuntersuchungen zu interkalierten Metallatomen in sp2-hybridisiertem Kohlenstoff mittels Elektronenstrukturrechnungen

Dick, Daniel 24 June 2022 (has links)
Graphen und Graphit als Vertreter sp2-hybridisierter Kohlenstoffmaterialien weisen sehr gute elektronische Eigenschaften auf, die sich in vielen Fällen durch Adsorption oder Interkalation von Metallatomen weiter verbessern lassen. In dieser Arbeit wird die atomare Struktur von nickelinterkaliertem Graphit sowie von nickelbesetztem Mono- und Bilagen-Graphen und deren Stabiität mittels Dichtefunktionaltheorie berechnet und untereinander verglichen. Durch Untersuchung des Einflusses der Nickelatomdichte sowie von Anzahl und Abstand der Kohlenstofflagen werden verallgemeinerte Vorhersagen für Graphitmaterialien mit Nickelinterkalation und deren Verhalten bei externen Verspannungen möglich. Abschließend wird der Einfluss der Nickelatome auf die elektronischen Eigenschaften anhand der Bandstruktur untersucht. Aufgrund zusätzliche Bänder in der Nähe der Fermienergie kann eine Verbesserung des elektrischen Transportes angenommen werden.:Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1. Einleitung 2. Überblick zu Kohlenstoffmaterialien 2.1. Formen des Kohlenstoffs 2.2. Interkalation 2.3. Elektronische Eigenschaften 3. Dichtefunktionaltheorie 3.1. Motivation 3.2. Das Hohenberg-Kohn-Theorem 3.3. Berechnung der Elektronendichte 3.4. Abschätzung der Austausch-Korrelations-Energie 3.4.1. Lokale Dichtenäherung 3.4.2. Verallgemeinerten Gradientennäherung 4. Simulationsmethodik 4.1. Modellsystem 4.2. Software und Rechenparameter 5. Ergebnisse 5.1. Gleichgewichtspositionen 5.1.1. Nickelbesetztes Graphen 5.1.2. Interkalierte Systeme 5.1.3. Betrachtung höherer Nickeldichten 5.2. Einfluss des Lagenabstandes und Stabilitätsbetrachtungen 5.3. Elektronische Eigenschaften 5.3.1. Einfluss der geometrischen Struktur 5.3.2. Bandstruktur von nickelbesetztem Graphen 5.3.3. Bandstrukturen der interkalierten Systeme 6. Zusammenfassung und Ausblick A. Einfluss der Nickeldichte B. SCAN-Funktional und ebeneWellen C. Energielandschaften bei konstantem Lagenabstand D. Spineffekte in der Bandstruktur E. Fette Bandstruktur der weiteren Systeme Literaturverzeichnis Selbstständigkeitserklärung

Page generated in 0.085 seconds