• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 39
  • 32
  • Tagged with
  • 141
  • 141
  • 74
  • 72
  • 72
  • 52
  • 43
  • 30
  • 26
  • 20
  • 19
  • 17
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real-time MRI of Moving Spins Using Undersampled Radial FLASH / Echtzeit MRI von bewegten Spins mithilfe der unterabgetasteten radialen FLASH sequenz

Joseph, Arun Antony January 2013 (has links) (PDF)
Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI. / Die Bewegung der Kernspins ist eine wesentliche Eigenschaft von dynamischen Vorgängen, die mit Hilfe der Magnetresonanztomographie (MRT) untersucht werden. Bewegte oder fließende Spins charakterisieren viele Funktionen des menschlichen Körpers, wie z.B. die Gewebeperfusion und den Blutfluss in den Gefäßen. Die quantitative MRT von bewegten Spins kann daher wertvolle Informationen über die menschliche Physiologie oder auch über ein technisches System geben. Insbesondere die Phasenkontrast-MRT, die auf der Aufnahme von zwei Bildern mit und ohne flusskodierenden Gradienten basiert, hat sich als ein wichtiges diagnostisches Werkzeug in der Medizin entwickelt, um den Blutfluss funktionell zu quantifizieren. Die klinische Nutzung ist jedoch durch die langen Messzeiten eingeschränkt, da die Daten über mehrere Herzzyklen gemittelt werden müssen und damit die Untersuchung unmittelbarer physiologischer Reaktionen auf Stress und/oder Muskelbelastung ausgeschlossen ist. Ein primäres Ziel dieser Arbeit war es, diese Einschränkungen durch die Entwicklung einer MRT-Flussmessung in Echtzeit zu überwinden. Entscheidende Grundlage jeder Echtzeit-MRT sind kurze Aufnahmezeiten, die vor allem durch eine Reduktion der aufgenommenen Daten (Unterabtastung) realisiert werden. Daher konzentrierte sich die hier vorgestellte Entwicklung auf die damit verbundenen technischen Aspekte wie die MRT-Sequenz zur Datenaufnahme, das räumliche Kodierungsschema, und die Bildrekonstruktion. Experimentell erwies sich ein radiales Kodierungsschema als robust gegenüber Bewegungen und relativ unempfindlich gegenüber milder Unterabtastung. Dieses Kodierungsschema wurde mit der FLASH Aufnahmetechnik für eine effiziente Phasenkontrast-Sequenz in Echtzeit kombiniert. Zusätzlich wurde die Sequenz durch Überlappung von Gradienten hinsichtlich einer kurzen Echozeit optimiert. Für die Bildrekonstruktion wurde die regularisierte nichtlineare inverse Rekonstruktion (NLINV) verwendet, bei der die Bildinformation und die entsprechenden pulensensitivitäten gleichzeitig geschätzt werden. NLINV wurde speziell für die Phasenkontrast-MRT angepasst, um sowohl Betragsbilder als auch robuste Phasenkontrast-Karten mit hoher raumzeitlicher Genauigkeit zu berechnen. Das erarbeitete Verfahren der Phasenkontrast-MRT in Echtzeit kombiniert daher zwei stark unterabgetastete (bis zu einem Faktor von 30) und unterschiedlich flusskodierte, radiale Gradientenecho-Aufnahmen mit einer modifizierten NLINV Rekonstruktion. Mit dieser Methode wurde sowohl eine gute räumliche Auflösung (1.3 mm), als auch eine hohe zeitliche Auflösung (40 ms) erreicht. Bei Anwendungen an gesunden Probanden sowie vorläufigen Untersuchungen von Patienten konnte nachgewiesen werden, dass die Phasenkontrast-MRT in Echtzeit einen verbesserten Komfort für die Patienten (z.B. freie Atmung) und unmittelbaren Zugang zu physiologischen Veränderungen der Flussparameter bietet (z.B. Reaktion auf erhöhten Druck im Brustraum). In den meisten Fällen wurden quantitative Blutflussmessungen in der aufsteigenden Aorta, einem klinisch wichtigen Gefäß des Herz-Kreislauf-Systems, vorgenommen. Die Messungen mit der Phasenkontrast-MRT in Echtzeit wurden mit der EKG-getriggerten Cine Phasenkontrast-MRT (klinischer Standard) an einem Flussphantom und unter in vivo Bedingungen verglichen. Die Ergebnisse zeigten unter vergleichbaren Bedingungen gute Übereinstimmung. Im Rahmen dieser Arbeit wurde zusätzlich eine Doppelecho-Variante der Phasenkontrast-MRT in Echtzeit implementiert. Das Einfügen eines flusskodierenden Gradienten zwischen den beiden Echos führte zu einer weiteren Reduzierung der Messzeit. Obwohl sich diese Technik unter in vitro Bedingungen als tauglich erwies, zeigten sich bei in vivo Studien störende Einflüsse durch bewegungsinduzierte Phasenbeiträge, die wenig Erfolg für quantitative Flussmessungen versprechen. Als weitere Methode wurde in dieser Arbeit eine dreifach kodierte Sequenz zur Phasenkontrast-MRT entwickelt, um multidirektionalen Fluss zu untersuchen. Die Geschwindigkeitskodierung entlang aller drei physikalischen Gradientenrichtungen führte zu einer verlängerten Messzeit (zeitliche Auflösung � 100 ms) gegenüber der Echtzeit-Flussmessung in nur einer Richtung. Obwohl das Verfahren noch zu langsam ist, um den kardiovaskulären Blutfluss adäquat zu beschreiben, waren vorläufige Ergebnisse in Körperregionen außerhalb des Herzens für zukünftige klinische Anwendungen sehr vielversprechend. Es ist zu erwarten, dass entsprechende Weiterentwicklungen von modellbasierten ekonstruktionsverfahren profitieren werden.
2

Spin Transport in Topological Insulators and Geometrical Spin Control / Spintransport in topologischen Isolatoren und geometrische Spinkontrolle

Rothe, Dietrich Gernot January 2015 (has links) (PDF)
In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation. The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model, we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin. Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states. In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance, but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system. / Manipulation und Transport von elektronischen Spins sind die wesentlichen Elemente, die für das Funktionieren einer zukünftigen Spin-basierten Elektronik implementiert werden müssen. Diese Arbeit befasst sich schwerpunktmäßig mit Halbleitersystemen, in denen diese Prinzipien mit hoher Zuverlässigkeit möglich sind. Dazu wurden sowohl numerische als auch analytische Berechnungsmethoden genutzt, letztere oft in der Form einfacher Modelle zur Interpretation der numerischen Ergebnisse. Das Halbleitersystem von HgTe/CdTe Quantentrögen, auch bekannt als zweidimensionaler topologischer Isolator, ist sowohl von fundamentalem wissenschaftlichen Interesse, da die topologisch nichttriviale Energiestruktur zu einem Schutz von Transporteigenschaften führt, als auch von angewandterem Interesse, da aus diesem Materialsystem Proben gefertigt werden können, die ballistischen Transport hoher Qualität zeigen, und da zudem die Rashba Spin-Bahn-Kopplung sowie die elektronische Dichte durch elektrische Steuerelektroden einstellbar sind. Wir erweitern das Bernevig-Hughes-Zhang Modell für zweidimensionale topologische Isolatoren, indem wir ein Vierbandmodell herleiten, das Rashba Spin-Bahn-Kopplungsterme enthält, die durch ein äußeres elektrisches Feld hervorgerufen werden, wenn dieses die Inversionssymmetrie des Quantentroges bricht. Der Transport von Spins in diesem System zeigt ein interessantes Wechselspiel zwischen Effekten der Rashba Spin-Bahn-Kopplung und Effekten der intrinsischen Dirac-artigen Spin-Bahn-Kopplung. Dabei dominiert die Rashba Spin-Bahn-Kopplung das Verhalten des Spin-Hall-Signals. Basierend auf der einstellbaren Rashba Spin-Bahn-Kopplung, schlagen wir einen spinselektiven Polarisator zur rein elektrischen Erzeugung und Detektion von Spinströmen vor. Das Funktionsprinzip ist vergleichbar mit demjenigen eines doppelbrechenden Kristalls. In der vorgeschlagenen Anordnung untersuchen wir die Spinpolarisation in verschieden Spinvektorkomponenten und zeigen die Realisierbarkeit von hoher Spinpolarisation in der Ebene. Da der Spin keine Erhaltungsgröße des Halbleitermodells ist, analysieren wir in einem ersten Schritt den Transport von der Erhaltungsgröße Helizität, und setzen die erzeugte Polarisation dann in Bezug zur Spinpolarisation. Des Weiteren analysieren wir thermoelektrischen Transport in einem System, das auch den Spin-Hall-Effekt zeigt. Aufgrund von Spin-Bahn-Kopplung kommt es beim Anlegen eines Temperaturgradienten zu einem transversalen Spinstrom, genannt Spin-Nernst-Effekt. Dieser ist über eine Mott-artige Beziehung mit dem Spin-Hall-Effekt verknüpft. Im metallischen Energiebereich können wir die Signale qualitativ anhand von einfachen analytischen Modellen verstehen. Im Energiebereich der elektronischen Bandlücke finden wir ein Spin-Nernst-Signal, das vom räumlichen Überlapp der Randzustände herrührt, die an gegenüberliegenden Kanten des Halbleitersystems lokalisiert sind. Im methodischen ersten Teil dieser Arbeit diskutieren wir zwei komplementäre Methoden zur Konstruktion von effektiven Halbleitermodellen, nämlich die Methode der Envelopefunktionen und die Methode der Invarianten. Außerdem präsentieren wir Elemente der elektronischen Transporttheorie, unter besonderer Beachtung von Spintransport. Wir diskutieren die Zusammenhänge zwischen dem adiabatischen Theorem in der Quantenmechanik einerseits, und semiklassischer Transporttheorie sowie der topologischen Klassifizierung von Phasen andererseits. Als weitere Anwendung des adiabatischen Theorems zeigen wir, wie universelle Kontrolle eines einzelnen Spins in einem Quantenpunkt aus Schwerlochzuständen experimentell realisiert werden kann, ohne dabei die Zeitumkehrsymmetrie zu brechen. Zu diesem Zweck führen wir ein elektrisches Quadrupolfeld ein, dessen Konfiguration als adiabatischer Kontrollparameter dient. Wir schlagen die experimentelle Realisierung des Quantenpunktes in einem QaAs/GaAlAs Quantentrogsystem vor.
3

Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds / Transport Phänomene in Bi\(_2\)Se\(_3\) und verwandten Materialien

Grauer, Stefan January 2018 (has links) (PDF)
One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics. / Einer der wichtigsten technologischen Fortschritte der Geschichte wurde von der Nutzung einer neuen Materialklasse getrieben: Halbleitern. Ihre wichtigste Anwendung ist der Transistor, welcher unverzichtbar für unseren Alltag geworden ist. Allerdings ist der technologische Fortschritt in der Halbleiterindustrie dabei sich zu verlangsamen. Versuche die Transistoren immer kleiner zu machen und die Abwärme zu regulieren und zu reduzieren werden bald ihr, durch die Quantenmechanik vorgeschriebenes, Ende erreichen. Moore selbst hat schon das Ende seines berühmten Gesetzes für das nächste Jahrzehnt vorhergesagt. Ein möglicher Nachfolger für Halbleitertransistoren ist die kürzlich entdeckte Materialklasse der topologischen Isolatoren. Ein Material, dass in seinem Volumen isolierend ist, aber an seinen Grenzen durch die Topologie geschützte metallische Oberflächenzustände oder Randkanäle hat. Deren elektrischen Transporteigenschaften umfassen unterdrückte Rückstreuung und Spin-Impuls-Kopplung, wobei der Spin des Elektrons senkrecht zu seinem Impuls ist. Topologische Isolatoren bieten daher die Möglichkeit für hochleistungsfähige Bauteile mit niedrigem Widerstand und für Anwendungen in der Spintronik, in der Daten an der gleichen Stelle gespeichert und prozessiert werden. Der topologische Isolator Bi\(_2\)Se\(_3\) und verwandte Materialien weisen eine relativ hohe Energielücke und eine eher einfache Bandstruktur mit einem einzigen Dirac-Kegel am Gammapunkt der Brilloiun Zone auf. Diese Eigenschaften machen sie zu idealen Kandidaten um den topologischen Oberflächenzustand in elektrischen Transportexperimenten zu untersuchen und seine neue Physik zu entdecken.
4

Memristanz und Memkapazität von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen / Memristance and memcapacitance of quantum dot floating gate transistors: realization of neuromorphic and arithmetic operations

Maier, Patrick January 2018 (has links) (PDF)
In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abhängigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerstände und Kapazitäten aufweisen. Diese Ladungsabhängigkeiten führen beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabhängigen Widerstände und Kapazitäten ermöglichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalitäten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen. / In this thesis, state-dependent resistances and capacitances in quantum dot floating gate transistors based on modulation doped GaAs/AlGaAs heterostructures with site-controlled InAs quantum dots are presented. The accumulation of electrons in the quantum dots simultaneously increases the resistance and decreases the capacitance, which leads to characteristic pinched hysteresis loops in the current-voltage- and the charge-voltage-characteristics when applying periodic input signals. The concurrent resistance and capacitance switching enables the realization of neuromorphic operations via mimicking of synaptic functionalities and arithmetic operations via the integration of voltage and light pulses.
5

Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung / Electronic Properties of honeycomb lattices with strong spin-orbit coupling

Vogt, Matthias Guido January 2020 (has links) (PDF)
Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. / In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules.
6

Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes / Pfade angeregter Zustände in Organischen Leuchtdioden dritter Generation

Bunzmann, Nikolai Eberhard January 2021 (has links) (PDF)
This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements. / In dieser Arbeit wurden Spinzustände identifiziert, die an der Lichterzeugung von organischen Leuchtdioden beteiligt sind, welche auf thermisch aktivierter verzögerter Fluoreszenz (engl. TADF) basieren. Zuerst wurden mehrere Donor:Akzeptor basierte TADF Systeme untersucht. Danach wurde ein TADF Emitter studiert, welcher intramolekulare Ladungstransfer Zustände (engl. CT states) zeigt, aber auch Exziplex Zustände mit einem geeigneten Donor Molekül bildet. In erster Linie wurde die experimentelle Methode der Elektronenspinresonanz (ESR) genutzt, insbesondere die erweiterten Techniken Elektrolumineszenz detektierte Magnetresonanz (ELDMR), Photolumineszenz detektierte Magnetresonanz (PLDMR) und elektrisch detektierte Magnetresonanz (EDMR). Zusätzliche Informationen wurden aus zeitaufgelösten und dauerstrich Photolumineszenz Messungen gewonnen.
7

Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices / Spin-Spin-Wechselwirkungen und ihre Einflüsse auf organische Leuchtdioden

Weißenseel, Sebastian Günter January 2022 (has links) (PDF)
This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence. / Diese Arbeit untersucht die Zusammenhänge zwischen Spinzuständen und den Lichtemissions Eigenschaften von Organischen Leuchtdioden (OLEDs), welche auf dem Prinzip der thermisch aktivierten verzögerten Fluoreszenz basieren. Die für diesen Mechanismus verantwortlichen Spin-Spin-Wechselwirkungen werden im Rahmen der Arbeit mit Methoden untersucht, die auf der spinsensitiven Elektron Paramagnetische Resonanz (EPR) basieren. Insbesondere wurde diese Methode auf elektrisch betriebene OLEDs angewendet und die magnetische Resonanz durch Elektrolumineszenz nachgewiesen, was dieser Methode ihren Namen verleiht: Elektrolumineszenz detektierte magnetische Resonanz (ELDMR). Erste Untersuchungen an einem neuartigen tiefblauen TADF-Emitters wurden durchgeführt. Ebenfalls konnte in dieser Arbeit mit Hilfe der ELDMR-Methode direkt die Spinzustände in der OLED detektiert werden. Unterstützt wurden diese Messungen von Zeit-aufgelösten Experimenten wie transiente Elektro- und Photolumineszenz.
8

High Power GaN/AlGaN/GaN HEMTs Grown by Plasma-Assisted MBE Operating at 2 to 25 GHz

Waechtler, Thomas, Manfra, Michael J, Weimann, Nils G, Mitrofanov, Oleg 27 April 2005 (has links)
Heterostructures of the materials system GaN/AlGaN/GaN were grown by molecular beam epitaxy on 6H-SiC substrates and high electron mobility transistors (HEMTs) were fabricated. For devices with large gate periphery an air bridge technology was developed for the drain contacts of the finger structure. The devices showed DC drain currents of more than 1 A/mm and values of the transconductance between 120 and 140 mS/mm. A power added efficiency of 41 % was measured on devices with a gate length of 1 µm at 2 GHz and 45 V drain bias. Power values of 8 W/mm were obtained. Devices with submicron gates exhibited power values of 6.1 W/mm (7 GHz) and 3.16 W/mm (25 GHz) respectively. The rf dispersion of the drain current is very low, although the devices were not passivated. / Heterostrukturen im Materialsystem GaN/AlGaN/GaN wurden mittels Molekularstrahlepitaxie auf 6H-SiC-Substraten gewachsen und High-Electron-Mobility-Transistoren (HEMTs) daraus hergestellt. Für Bauelemente mit großer Gateperipherie wurde eine Air-Bridge-Technik entwickelt, um die Drainkontakte der Fingerstruktur zu verbinden. Die Bauelemente zeigten Drainströme von mehr als 1 A/mm und Steilheiten zwischen 120 und 140 mS/mm. An Transistoren mit Gatelängen von 1 µm konnten Leistungswirkungsgrade (Power Added Efficiency) von 41 % (bei 2 GHz und 45 V Drain-Source-Spannung) sowie eine Leistung von 8 W/mm erzielt werden. Bauelemente mit Gatelängen im Submikrometerbereich zeigten Leistungswerte von 6,1 W/mm (7 GHz) bzw. 3,16 W/mm (25 GHz). Die Drainstromdispersion ist sehr gering, obwohl die Bauelemente nicht passiviert wurden.
9

Standardization of diffusion and porosity models for electrochemical systems

Tröltzsch, Uwe, Kanoun, Olfa January 2010 (has links)
For example for battery diagnosis it is essential to understand mechanisms during discharge and because of aging to optimize cell design and operating conditions. Therefore the overall battery behavior can be modeled by combining models of relevant mechanisms like porosity, charge transfer reaction and diffusion. The aim of this contribution is to define one transmission line model for modeling several of these mechanisms. Thereby a sophisticated normalization strategy allows to eliminate ambiguity and to quantify the influence of each model parameter. The results allow a better understanding of impedance measurements and can for example be used for battery diagnosis and simplified simulations of electrochemical systems. Fitting derived impedance models to measurement data by nonlinear parameter extraction techniques allows to monitor battery parameters during discharge and because of aging. Thereby a sophisticated normalization strategy is essential for unambiguous parameter extraction and useful to quantify the influence of each model parameter.
10

Implementierung des Drift-Diffusions-Modells zur Berechnung des elektronischen Transportes durch Kohlenstoffnanoröhrchen

Lorkowski, Florian 28 May 2018 (has links)
Diese Arbeit beschäftigt sich mit der Entwicklung und Implementierung eines Algorithmus zur Berechnung des diffusiven elektronischen Transportes durch Kohlenstoffnanoröhrchen-Feldeffekttransistoren (CNTFETs) unter Verwendung des Drift-Diffusions-Modells. Als Grundlage dient ein bekannter, eindimensionaler Algorithmus für klassische Halbleiter, durch welchen das elektrostatische Potential im stationären Zustand berechnet werden kann. Dieser Algorithmus wird erweitert, um die geometrischen und physikalischen Besonderheiten von CNTFETs, insbesondere die Quasi-Eindimensionalität, zu berücksichtigen. Wichtige Kenngrößen des CNTFETs werden berechnet und deren Abhängigkeit von den Bauteilparametern wird untersucht.:1. Einleitung 2. Theoretische Betrachtungen 2.1. Kohlenstoffnanoröhrchen 2.1.1. Graphen als Baustein für CNTs 2.1.2. Eigenschaften von CNTs 2.2. Drift-Diffusions-Modell 2.2.1. Drift-Diffusions-Gleichungen 2.2.2. Kontinuitätsgleichungen 2.2.3. Poisson-Gleichung 3. Implementierung 3.1. Modell für klassische Halbleiter 3.1.1. Herleitung der dimensionslosen Bewegungsgleichungen 3.1.2. Umformung der Drift-Diffusions-Gleichungen 3.1.3. Iterative Lösung des Gleichungssystems 3.2. Anwendung des Modells auf Kohlenstoffnanoröhrchen 3.2.1. Betrachtetes Modell 3.2.2. Separationsansatz und Poisson-Gleichung 3.2.3. Anpassung der Drift-Diffusions-Gleichungen 3.2.4. Gate-Spannung 3.2.5. Intrinsische Ladungsträgerdichte und Ladungsträgerrandbedingungen 3.2.6. Dielektrizität 3.3. Numerik 3.3.1. Berechnung der Ladungsträgerdichten 3.3.2. Lösung der Poisson-Gleichung 3.3.3. Iterative Veränderung von Parameterwerten 3.3.4. Überprüfung der Konvergenz des Gitters 4. Auswertung 4.1. Literaturmodelle 4.2. Ergebnisse 4.2.1. Potentialverlauf 4.2.2. Potentialplateau 4.2.3. Abschirmlänge 4.2.4. Stromfluss 4.2.5. Rechenzeit 5. Zusammenfassung Anhang A. Herleitung der Drift-Diffusions-Gleichungen aus der Boltzmann-Transportgleichung B. Herleitung der eindimensionalen Poisson-Gleichung aus dem Separationsansatz

Page generated in 0.0251 seconds