The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200601556 |
Date | 06 September 2006 |
Creators | Pester, Cornelia |
Contributors | TU Chemnitz, SFB 393 |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | text/html, text/plain, image/png, image/gif, text/plain, image/gif, application/pdf, application/x-gzip, text/plain, application/zip |
Source | Preprintreihe des Chemnitzer SFB 393, 05-01 |
Page generated in 0.0025 seconds