Return to search

Engineering of Lactic Acid Bacteria strains modulating immune response for vaccination and delivery of therapeutics

The use of Lactic Acid Bacteria (LAB), such as Lactococcus lactis (LL), as DNA delivery vehicles represents an interesting strategy as they are regarded as safe. Wild type (wt) LL or recombinant invasive LL, were able to trigger DNA expression by epithelial cells both in vitro and in vivo. However, important information about how LL can transfer DNA plasmids is still missing. Therefore, we decided to construct a new recombinant invasive LL strain expressing mutated Internalin A (mInlA) from the pathogen Listeria monocytogenes to understand the manner by which the DNA is transferred to mammalian cells. mInlA expression was detected by FACS analysis and LL-mInlA strain showed to be more invasive than the wt strain after co-incubation assays with non-confluent or polarized intestinal epithelial cells (IECs). Confocal microscopy confirmed the invasive status of LL-mInlA which demonstrated to deliver more efficiently the eukaryotic expression vector coding the allergen β-lactoglobulin, pValac:BLG, in vitro to IECs and to dendritic cells (DCs). LL-mInlA was also capable to transfer pValac:BLG to DCs across a monolayer of differentiated IECs. In vivo, invasive lactococci tended to increase the number of mice expressing BLG. Moreover, noninvasive or invasive LL-mInlA stimulated the secretion of the pro-inflammatory cytokine IL-12 in DCs and, in vivo, after oral or intranasal immunization trials, non-invasive LL polarized the immune response more in the type 1 direction while invasive LL generated a Th2-type response in immunized animals. All these data gives new insights on the mechanism of lactococci uptake for delivery of therapeutics.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00981946
Date25 October 2013
CreatorsAzevedo, Marcela
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.002 seconds