[pt] Esta dissertação apresenta uma metodologia para medição visual de campos de deformações (2D) em materiais, por meio da aplicação da técnica SIFT (Scale Invariant Feature Transform). A análise de imagens capturadas é feita por uma câmera digital em estágios diferentes durante o processo de deformação de um material quando este é submetido a esforços mecânicos. SIFT é uma das técnicas modernas de visão computacional e um eficiente filtro para extração e descrição de pontos de características relevantes em imagens, invariantes a transformações em escala, iluminação e rotação. A metodologia é baseada no cálculo do gradiente de funções que representam o campo de deformações em um material durante um ensaio mecânico sob diferentes condições de contorno. As funções são calibradas com a aplicação da análise inversa sobre o conjunto de pontos homólogos de duas imagens extraídos pelo algoritmo SIFT. A formulação da solução ao problema inverso combina os dados experimentais fornecidos pelo SIFT e o método linear de mínimos quadrados para estimação dos parâmetros de deformação. Os modelos propostos para diferentes corpos de prova são avaliados experimentalmente com a ajuda de extensômetros para medição direta das deformações. O campo de deformações identificado pelo sistema de visão computacional é comparado com os valores obtidos pelos extensômetros e por simulações feitas no programa de Elementos Finitos ANSYS. Os resultados obtidos mostram que o campo de deformações pode ser medido utilizando a técnica SIFT, gerando uma nova ferramenta visual de medição para ensaios mecânicos que não se baseia nas técnicas tradicionais de correlação de imagens. / [en] This thesis presents a methodology for measurement of strain fields in
materials by applying the SIFT technique (Scale Invariant Feature Transform).
The images analyzed are captured by a digital camera at different stages during
the deformation process of a material when it is subjected to mechanical stress.
SIFT is one of the modern computer vision techniques and an efficient filter for
extraction and description of relevant feature points in images. These interest
points are largely invariant to changes in scale, illumination and rotation. The
methodology is based on the calculation of the gradient of the functions that
represents the corresponding strain field in the material during a mechanical test
under different boundary conditions. The functions are calibrated with the
application of inverse analysis on the set of homologous points of two images
extracted by the SIFT algorithm. The formulation of the solution to the inverse
problem combines the experimental data processed by the SIFT and linear least
squares method for the estimation of strain parameters. The proposed models for
different specimens are evaluated experimentally with strain gauges for direct
measurement of the deformations. The strain field identified by the computer
vision system is compared with values obtained by strain gauges and simulations
with the ANSYS finite element program. The proposed models for different types
of measurements are experimentally evaluated with strain gages, including the
estimation of mechanical properties. The results show that the strain field can be
measured using the SIFT technique, developing a new visual tool for
measurement of mechanical tests that are not based on traditional techniques of
image correlation.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:17050 |
Date | 10 March 2011 |
Creators | GIANCARLO LUIS GOMEZ GONZALES |
Contributors | MARCO ANTONIO MEGGIOLARO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0019 seconds