The most used design approach for civil engineering structures is a trial and error procedure; the designer chooses an initial configuration, tests it and changes it until all safety requirements are met with good material utilization. Such a procedure is time consuming and eventually leads to a feasible solution, while several better ones could be found. Indeed, together with safety, environmental impact and investment cost should be decisive factors for the selection of structural solutions. Thus, structural optimization with respect to environmental impact and cost has been the subject of many researches in the last decades. However, design techniques based on optimization haven’t replaced the traditional design procedure yet. One of the reasons might be the constructive feasibility of the optimal solution. Moreover, concerning reinforced concrete beam bridges, to the best of the author knowledge, no study in the literature has been published dealing with the optimization of the entire bridge including both the structural configuration and cross-section dimensions. In this thesis, a two-steps automatic design and optimization procedure for reinforced concrete road beam bridges is presented. The optimization procedure finds the solution that minimizes the investment cost and the environmental impact of the bridge, while fulfilling all requirements of Eurocodes. In the first step, given the soil morphology and the two points to connect, it selects the optimal number of spans, type of piers-deck connections and piers location taking into account any obstacle the bridge has to cross. In the second and final step, it finds the optimal dimensions of the deck cross-section and produces the detailed reinforcement design. Constructability is considered and quantified within the investment cost to avoid a merely theoretical optimization. The wellknown Genetic Algorithm (GA) and Pattern Search optimization algorithms have been used. However, to reduce the computational effort and make the procedure more user-friendly, a memory system has been integrated and a modified version of GA has been developed. Moreover, the design and optimization procedure is used to study the relationship between the optimal solutions concerning investment cost and environmental impact. One case study concerning the re-design of an existing road bridge is presented. Potential savings obtained using the proposed method instead of the classic design procedure are presented. Finally, parametric studies on the total bridge length have been carried out and guidelines for designers have been produced regarding the optimal number of spans. / <p>QC 20190304</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-244866 |
Date | January 2019 |
Creators | Khouri Chalouhi, Elisa |
Publisher | KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ABE-DLT ; 194 |
Page generated in 0.0017 seconds