Return to search

Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

The systematic study of the formation of β-SiC formed by low energy carbon ion (C-)implantation into Si followed by high temperature annealing is presented. The research is performed to explore the optimal annealing conditions. The formation of crystalline β-SiC is clearly observed in the sample annealed at 1100 °C for a period of 1 hr. Quantitative analysis is performed in the formation of β-SiC by the process of implantation of different carbon ion fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms /cm2 at an ion energy of 65 keV into Si. It is observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100°C for 1 hr. However, it is observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms /cm2. Above this fluence the amount of β-SiC appears to saturate. The stability of graphitic C-C bonds at 1100°C limits the growth of SiC precipitates in the sample implanted at a fluence of 8×1017 atoms /cm2 which results in the saturation behavior of SiC formation in the present study.
Secondly, the carbon cluster formation process in silica and the characterization of formed clusters is presented. Silicon dioxide layers ~500 nm thick are thermally grown on a Si (100) wafer. The SiO2 layers are then implanted with 70 keV carbon ions at a fluence of 5×1017 atoms/cm2. The implanted samples are annealed 1100 °C for different time periods of 10 min., 30 min., 60 min., 90 min., and 120 min., in the mixture of argon and hydrogen gas (96 % Ar + 4% hydrogen). Photoluminescence spectroscopy reveals UV to visible emission from the samples. A detail mechanism of the photoluminescence and its possible origin is discussed by correlating the structural and optical properties of the samples. Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, spectroscopy, photoluminescence spectroscopy, and transmission electron microscopy are used to characterize the samples.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc68033
Date05 1900
CreatorsPoudel, Prakash Raj
ContributorsMcDaniel, Floyd D., Duggan, Jerome L., Weathers, Duncan L., Rout, Bibhu
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Poudel, Prakash Raj, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0018 seconds