Le but de cette thèse est de définir puis d'étudier différentes notions d'irrégularité uniforme ou ponctuelle permettant de traduire le fait qu'une fonction peut avoir des 'grands accroissements' à toutes les échelles. Pour cela on 'inverse' les notions de régularité Höldérienne usuelles. L'objectif principal du travail est ensuite de relier ces différentes notions à la théorie des ondelettes. Les critères ondelettes établis vont ainsi permettre de définir des fonctions ou des champs aléatoires dont le comportement est différent suivant la gamme d'échelles considérée. Par ailleurs, si on se place du point de vue ponctuel, une question naturelle est celle de la définition d'une analyse multifractale -dite faible- liée à la notion d'irrégularité ponctuelle. Les ondelettes vont alors permettre de définir des séries d'ondelettes multifractales pour l'irrégularité ponctuelle. Enfin, nous étudions des exemples de champs aléatoires où des propriétés de régularité directionelle apparaissent. Nous nous sommes ainsi centré sur l'étude d'un modèle de champ aléatoire gaussien particulier vérifiant une relation d'autosimilarité matricielle. Nous avons ensuite généralisé ce modèle et introduit des champs gaussiens autosimilaires par rapport à un groupe
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00462162 |
Date | 27 November 2008 |
Creators | Clausel, Marianne |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds