Return to search

Certain Diagonal Equations over Finite Fields

Let Fqt be the finite field with qt elements and let F*qt be its multiplicative group. We study the diagonal equation axq−1 + byq−1 = c, where a,b and c ∈ F*qt. This equation can be written as xq−1+αyq−1 = β, where α, β ∈ F ∗ q t . Let Nt(α, β) denote the number of solutions (x,y) ∈ F*qt × F*qt of xq−1 + αyq−1 = β and I(r; a, b) be the number of monic irreducible polynomials f ∈ Fq[x] of degree r with f(0) = a and f(1) = b. We show that Nt(α, β) can be expressed in terms of I(r; a, b), where r | t and a, b ∈ F*q are related to α and β. A recursive formula for I(r; a, b) will be given and we illustrate this by computing I(r; a, b) for 2 ≤ r ≤ 4. We also show that N3(α, β) can be expressed in terms of the number of monic irreducible cubic polynomials over Fq with prescribed trace and norm. Consequently, N3(α, β) can be expressed in terms of the number of rational points on a certain elliptic curve. We give a proof that given any a, b ∈ F*q and integer r ≥ 3, there always exists a monic irreducible polynomial f ∈ Fq[x] of degree r such that f(0) = a and f(1) = b. We also use the result on N2(α, β) to construct a new family of planar functions.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-1038
Date29 May 2009
CreatorsSze, Christopher
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0013 seconds