Ischemia-reperfusion (IR) injury occurs during myocardial infarction and during some cardiovascular surgeries. Animal studies support the role of endurance exercise training in preventing myocardial IR injury and coronary endothelial dysfunction. In human and animal studies, habitual exercise has been shown to attenuate endothelial dysfunction caused by aging and disease. It is unknown; however, if exercise can protect against vascular IR injury in humans and if so, whether these effects persist with advancing age. Using 20 minutes of forearm ischemia and the response of the brachial artery as a noninvasive surrogate model for the heart, the association between the mode of exercise training (endurance versus resistance) and vascular IR injury was examined in young healthy adults in the first study. Endothelial function, as measured by flow-mediated dilation (FMD) in the brachial artery, decreased significantly after forearm ischemia, suggesting that this noninvasive model of the heart produces significant and measureable vascular injury. These measures returned to baseline levels within 30 minutes following ischemia, illustrating the transient nature of this form of IR injury. The magnitude of injury and recovery from ischemia were not significantly different among young sedentary, endurance-trained, and resistance-trained subjects, suggesting that exercise training is not associated with protection from vascular IR injury in a young, healthy population. In the second study, the association between aging, endurance exercise training, and vascular IR injury was studied. Twenty minutes of forearm ischemia was associated with a transient fall in brachial FMD in young and older sedentary and endurance-trained subjects. Young subjects recovered more quickly from IR injury than older subjects. Within 30 minutes of injury, the endothelial function of the young group was back to baseline while blunted endothelial function persisted in older subjects for greater than 45 minutes after injury. There was no association between endurance exercise training and enhanced recovery from IR injury. These findings suggest that aging is associated with delayed recovery from vascular IR injury and that endurance training does not appear to modulate the vascular IR injury responses. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/10566 |
Date | 18 March 2011 |
Creators | DeVan, Allison Elizabeth |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0017 seconds