Return to search

Evaluation and Design of a SiC-Based Bidirectional Isolated DC/DC Converter

Galvanic isolation between the grid and energy storage unit is typically required for bidirectional power distribution systems. Due to the recent advancement in wide-bandgap semiconductor devices, it has become feasible to achieve the galvanic isolation using bidirectional isolated DC/DC converters instead of line-frequency transformers.

A survey of the latest generation SiC MOSFET is performed. The devices were compared against each other based on their key parameters. It was determined that under the given specifications, the most suitable devices are X3M0016120K 1.2 kV 16 mohm and C3M0010090K 900 V 10 mohm SiC MOSFETs from Wolfspeed.

Two of the most commonly utilized bidirectional isolated DC/DC converter topologies, dual active bridge and CLLC resonant converter are introduced. The operating principle of these converter topologies are explained. A comparative analysis between the two converter topologies, focusing on total device loss, has been performed. It was found that the CLLC converter has lower total device loss compared to the dual active bridge converter under the given specifications. Loss analysis for the isolation transformer in the CLLC resonant converter was also performed at different switching frequencies. It was determined that the total converter loss was lowest at a switching frequency of 250 kHz

A prototype for the CLLC resonant converter switching at 250 kHz was then designed and built. Bidirectional power delivery for the converter was verified for power levels up to 25 kW. The converter waveforms and efficiency data were captured at different power levels. Under forward mode operation, a peak efficiency of 98.3% at 15 kW was recorded, along with a full load efficiency value of 98.1% at 25 kW. Under reverse mode operation, a peak efficiency of 98.8% was measured at 17.8 kW. The full load efficiency at 25 kW under reverse mode operation is 98.5%. / Master of Science / Electrical isolation between the grid and energy storage unit is typically required for bidirectional power distribution systems. Traditionally, this isolation is achieved via line-frequency transformers, which tend to be bulky and heavy. This imposes a limit on the overall system power density, which is a crucial performance metric for bidirectional power distribution systems.

Alternatively, the required electrical isolation can be implemented through bidirectional power converters. As a result, the overall system power density can be drastically improved. However, the losses incurred by the semiconductor devices in such converters could significantly reduce the overall system efficiency, which is another important performance metric.

Due to the recent advancement in semiconductor devices, it has become feasible to design the required bidirectional power converters with high efficiency and high power density. A survey of the latest generation semiconductor devices is performed. A 25 kW converter prototype was designed and built using the selected semiconductor devices. Experimental testing was conducted for the converter prototype and efficiency values exceeding 98% were captured across the entire load range. The converter prototype has a power density of 78 W/inĀ³.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/81994
Date01 February 2018
CreatorsChu, Alex
ContributorsElectrical Engineering, Burgos, Rolando, Centeno, Virgilio A., Southward, Steve C., Skutt, Glenn R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0017 seconds