Return to search

Optique adaptative par modulateur spatial de lumière en microscopie et holographie / Adaptative optics with spatial light modulator for microscopy and holography

Depuis les années 50, la récupération de la phase d’un faisceau optique diffracté par un objet quelconque, est un sujet important dans plusieurs domaines scientifiques, comme la microscopie, l’astronomie et bien d’autres. Généralement, les méthodes qui le permettent se divisent en deux grandes catégories : les méthodes interférométriques et les méthodes itératives basées sur la propagation du faisceau. L’intérêt de ces dernières, réside dans le fait qu’elles sont moins sensibles au bruit, et leur implémentation expérimentale est plus simple. Aussi, le développement des techniques informatiques a rendu cette approche plus rapide et plus intéressante. Cependant, même si l’efficacité de ces méthodes a été démontrée dans plusieurs domaines, leur utilisation est restée limitée à cause de certaines exigences sur les conditions expérimentales, et à la non-convergence de leur algorithme vers une solution unique dans un grand nombre de cas. Ceci est encore plus vrai pour les objets dits "objets complexes", possédant une amplitude et une phase, ce qui réduit fortement leur champ d’application. Afin de surmonter ces problèmes de convergence, diverses stratégies expérimentales ont été développées. Elles ont toutes comme principe d’introduire de nouvelles contraintes bien connues dans le plan de l’objet. Cela permet d’augmenter le nombre de spectres acquis, et donc accroitre et diversifier les sources d’informations sur l’objet de base, ce qui va aider l’algorithme itératif à converger plus rapidement vers une solution finale et unique. Comme exemple de ces stratégies expérimentales, on peut acquérir plusieurs spectres provenant de différentes zones de l’objet, ou moduler la longueur d’onde du faisceau incident, ou même enregistrer les spectres dans des plans parallèles, connectés entre eux par la transformée de Fresnel. Dans ce contexte, le présent travail vise à démontrer expérimentalement une technique connue sous SSPR (Spread Spectrum Phase Retrieval), proposé en 2007 par Zhang, tout en lui introduisant un certain nombre de modifications, afin de la rendre plus pratique. L’idée consiste à moduler le front d’onde de l’objet par M phases aléatoires, générées avec un modulateur spatial de lumière à base de cristaux liquides (LC-SLM), puis enregistrer dans le plan de Fourier les M spectres correspondants. Ces M spectres seront ensuite utilisés dans un algorithme itératif permettant de remonter au front d’onde de l’objet initial, en simulant la propagation du front d’onde entre les deux espaces, spatial et fréquentiel.La première partie de cette thèse comporte une étude détaillée sur les modulateurs spatiaux de lumière, afin de pouvoir choisir le mieux adapté à notre application. Une fois que le modulateur à base de cristaux liquides (LC-SLM) est sélectionné, on présentera ses caractéristiques techniques, ainsi que les tests et les étapes de calibrations nécessaires pour assurer son fonctionnement linéaire et optimal. Ensuite, on montrera plusieurs types d’applications possibles avec ce composant, et dans divers domaines scientifiques, comme l’holographie, la microscopie, l’optique adaptative ainsi que les méthodes interférométriques permettant de reconstruire la phase d’un faisceau lumineux. Dans la deuxième grande partie, on concentre notre travail autour de la méthode itérative SSPR. On montrera comment on peut rendre l’application de cette méthode plus simple en utilisant un modulateur spatial de lumière à base de cristaux liquides, et en travaillant dans le plan de Fourier à la place du plan de Fresnel. Cependant, après avoir appliqué expérimentalement cette méthode, on remarque que les résultats obtenus sont très mauvais par rapport aux résultats des simulations. On effectue donc, une étude détaillée concernant les sources de bruits pouvant être responsable de la dégradation de la qualité des reconstructions obtenues. [...] / Since the 50s, recovering the phase information of a diffracted beam has a major interest in several fields such as microscopy, astronomy and many others. Generally, the solutions fall into two broad categories: interferometric methods and iterative methods based on beam propagation. The advantage of the latter is that they are less sensitive to noise, and their experimental implementation is simpler. Also, the progress in computer technologies as well in digital imaging devices makes the application of this approach easier and more interesting. However, even if the effectiveness of these methods has been demonstrated in several fields, their use remained limited because of certain requirements on the experimental conditions and the non-convergence of their algorithm to a single solution in many cases. This is even more true for the so-called "complex objects", having an amplitude and a phase, which can greatly reduce their field of application. To overcome the convergence problems and improve the robustness of these methods, many experimental strategies have been employed. They are all based on the same principle, which consists of introducing new well-known constraints in the object plane. This increases the number of acquired spectrum, and therefore diversifies the sources of information about the starting object, which will help the iterative algorithm to converge more quickly towards the final solution. As examples of such experimental strategies, one can record several spectra from different areas of the object, or modulate the wavelength of the incident beam, or also acquire the spectrums across two or more parallel planes connected through Fresnel or Fourier transform.In this context, the present work aims to experimentally demonstrate a technique known as SSPR (Spread Spectrum Phase Retrieval), proposed in 2007 by Zhang, while modifying it in order to make it more flexible. The idea is to introduce, using a liquid crystal spatial light modulator M strong phase modulation into the object field, then record in the Fourier plane the M corresponding spectrums. These M acquisitions will then be used in an iterative algorithm what will allow us to recover the object wavefront by simulating the propagation of the light between spatial and frequency spaces. The first part of this thesis includes a complete study on spatial light modulators; in order to select which one will be best suited for our application. Once liquid crystal spatial light modulators are selected, we present their technical characteristics, as well as the calibration tests needed to ensure their linear and optimal functioning. Then we show several possible applications with this type of component, in various scientific fields, like holography, microscopy, adaptive optics and interferometric methods to reconstruct the phase of a beam.In the second part, we focus our work around the SSPR iterative method. We will show how to make the application of this method simpler by using a liquid crystal spatial light modulator, and by working in Fourier plane instead of Fresnel plane. However, after applying SSPR we have noticed that the quality of experimental results is very inferior to the quality of simulation results. Therefore, a detailed study of the noise sources is conducted. Each of these noise sources adds its own contribution, yet modulator cross-talk remains the factor that deteriorates the most the quality of reconstruction. In fact liquid crystal spatial light modulators are known to have a strong cross-talk between their pixels commonly recognized as fringing field effect. As the pixels are micrometric, each addressed one affects its neighbors, and thus, the phase retardation obtained from a pixel will not be uniform over its entire surface. This will result in a blurring effect of the desired sharp edge between the pixels; therefore, the real displayed phase map will be very different from the addressed one. [...]

Identiferoai:union.ndltd.org:theses.fr/2016MULH9294
Date18 February 2016
CreatorsGemayel, Pierre
ContributorsMulhouse, Ambs, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0034 seconds