Dans les dernières années, beaucoup de progrès a été fait dans le domaine des voitures autonomes. Plusieurs grandes compagnies travaillent à créer un véhicule robuste et sûr. Pour réaliser cette tâche, ces voitures utilisent un lidar pour la localisation et pour la cartographie. Iterative Closest Point (ICP)est un algorithme de recalage de points utilisé pour la cartographie basé sur les lidars. Ce mémoire explore des approches pour améliorer le minimisateur d’erreur d’ICP. La première approche est une analyse en profondeur des filtres à données aberrantes. Quatorze des filtres les plus communs (incluant les M-estimateurs) ont été testés dans différents types d’environnement, pour un total de plus de 2 millions de recalages. Les résultats expérimentaux montrent que la plupart des filtres ont des performances similaires, s’ils sont correctement paramétrés. Néanmoins, les filtres comme Var.Trim., Cauchy et Cauchy MAD sont plus stables à travers tous les types environnements testés. La deuxième approche explore les possibilités de la cartographie à grande échelle à l’aide de lidar dans la forêt boréale. La cartographie avec un lidar est souvent basée sur des techniques de Simultaneous Localization and Mapping (SLAM) utilisant un graphe de poses, celui-ci fusionne ensemble ICP, les positions Global Navigation Satellite System (GNSS) et les mesures de l’Inertial Measurement Unit (IMU). Nous proposons une approche alternative qui fusionne ses capteurs directement dans l’étape de minimisation d’ICP. Nous avons réussi à créer une carte ayant 4.1 km de tracés de motoneige et de chemins étroits. Cette carte est localement et globalement cohérente. / In recent years a lot of progress has been made in the development of self-driving cars. Multiple big companies are working on creating a safe and robust autonomous vehicle . To make this task possible, theses vehicles rely on lidar sensors for localization and mapping. Iterative Closest Point (ICP) is a registration algorithm used in lidar-based mapping. This thesis explored approaches to improve the error minimization of ICP. The first approach is an in-depth analysis of outlier filters. Fourteen of the most common outlier filters (such as M-estimators) have been tested in different types of environments, for a total of more than two million registrations. The experimental results show that most outlier filters have a similar performance if they are correctly tuned. Nonetheless, filters such as Var.Trim., Cauchy, and Cauchy MAD are more stable against different environment types. The second approach explores the possibilities of large-scale lidar mapping in a boreal forest. Lidar mapping is often based on the SLAM technique relying on pose graph optimization, which fuses the ICP algorithm, GNSS positioning, and IMU measurements. To handle those sensors directly within theICP minimization process, we propose an alternative technique of embedding external constraints. We manage to create a crisp and globally consistent map of 4.1 km of snowmobile trails and narrow walkable trails. These two approaches show how ICP can be improved through the modification of a single step of the ICP’s pipeline.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/37990 |
Date | 06 February 2020 |
Creators | Babin, Philippe |
Contributors | Giguère, Philippe, Pomerleau, François |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xiii, 72 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0022 seconds