Asynchronous iterations often converge under different conditions than their syn- chronous counterparts. In this paper we will study the global convergence of Jacobi- Newton-like methods for nonlinear equationsF x = 0. It is a known fact, that the synchronous algorithm converges monotonically, ifF is a convex M-function and the starting valuesx0 andy0 meet the conditionF x04 04F y0 . In the paper it will be shown, which modifications are necessary to guarantee a similar convergence behavior for an asynchronous computation.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199801324 |
Date | 30 October 1998 |
Creators | Schrader, U. |
Contributors | TU Chemnitz, SFB 393 |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, application/postscript, text/plain, application/zip |
Page generated in 0.0017 seconds