Campylobacter organisms are the most commonly reported bacterial causes of foodborne infection in the world, with Campylobacter jejuni and Campylobacter coli responsible for over 99% of reported infections. Traditionally, Campylobacter species detection is an arduous process, requiring a special incubation environment as well as specific growth media for an extended growth period. The development of a rapid and reliable diagnostic tool for the detection of Campylobacter species would be a valuable aid to the medical diagnostic decision process, especially to rule out Campylobacter infection during the enteric pre-surgical time period. Improved patient outcomes would result if this rapid assay could reduce the number of enteric surgeries. Assays performed during this dissertation project have demonstrated that both SYBR® green and hydrolysis probe assays targeting an 84 nucleotide portion of cadF, a fibronectin-binding gene of Campylobacter jejuni and Campylobacter coli, were able to detect from 101 to 108 copies of organism from stool specimens, did not detect nonspecific targets, and exhibited a coefficient of variation (CV) of 1.1% or less. Analytical validation of sensitivity, specificity and precision, successfully performed in these studies, warrants additional clinical validation of these assays.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc9840 |
Date | 05 1900 |
Creators | Lewis, Sally |
Contributors | O'Donovan, Gerard, Benjamin, Robert C., Knesek, John, Meixner, J. Andrew, Goven, Art |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Copyright, Lewis, Sally, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0021 seconds